Great. Thank you very much, Mr. Chair. Good morning, everyone.
I speak to you from Treaty No. 6 territory, the traditional homeland of the Métis in the centre of the prairie provinces.
A bit about myself: I grew up in rural Saskatchewan and did my first two degrees here before moving to Davis, California, for my Ph.D. I returned to the University of Saskatchewan as a professor of soil science and eventually started as dean of agriculture and bioresources in summer 2020.
My comments today regarding the environmental contribution of agriculture come from all of these perspectives: as a dean whose college transcends any perceived boundary between environment and agriculture; as a farm kid; and as a soil scientist whose research has always focused on the interplay between soils and the environment.
To talk about agriculture's carbon footprint and the role that soils play in the fight against climate change, we must talk about the Prairies, which are home to 81% of Canada's farmland.
As we know, soil performs many ecosystem services, only one of which is supporting plant growth. Soil plays a crucial role in global water and nutrient cycles, in particular carbon and nitrogen cycles, which are essential for plant growth but problematic when mismanaged.
Here on the Prairies we celebrate the no-till success story, a widespread change in management that served to drastically reduce erosion, conserve water and nutrients and increase carbon storage. The high rate of adoption was driven by producers, including producer-run organizations like the Saskatchewan Soil Conservation Association, which also has one of the best long-term carbon monitoring studies with benchmark measurements back to 1996. They can provide really important learnings about best practices and challenges in carbon monitoring approaches.
Their prairie soil carbon balance study found that spatial variability can be very high in both the short range within a few metres, and long-range across climate gradients from semi-arid to subhumid. Furthermore, the time-related or temporal variability of soil processes can be very high due to management practices and things like multi-year droughts which lead to crop failure. When we add in consideration of greenhouse gases, the spatial-temporal variability is exponentially greater, and understanding what drives carbon dynamics, both the quantity and persistence of carbon stored, is essential for us to account for that variability.
That said, please don't let my discussion of variability alarm you. Soil management can be and in many areas already is part of the solution to climate change. But we need to be sure we have the resources and tools available to meaningfully quantify carbon sequestration, which brings me to my first key point for this group.
My first key point for the group today is that implementing policy based on soil carbon levels will require rigorous measurement and monitoring standards that recognize these sources of spatial and temporal variability. There are a couple of more things to keep in mind about variability. First, it's a challenge everywhere, not just for the Prairies, as B.C., Ontario, Quebec and the Maritimes all face similar challenges. Second, the best practices for increasing soil carbon will also vary widely across the country. There's no one-size-fits-all solution. What works for the St. Lawrence Lowland is not necessarily appropriate for the Alberta plains.
My second key point is that we're hearing a lot right now about managing soils to optimize soil health through approaches like regenerative agriculture. But as we think about agriculture and the environment, we also need to find a way to reward those who have been doing the right thing for a while, incentivize continued best practices to be sure that the carbon they have already accumulated stays sequestered, and not simply focus on new carbon accumulation from 2005.
Here in the west, no till has resulted in tremendous improvements in soil health since its widespread adoption in the 1980s and 1990s, but early adopters were part of the solution decades before we set an arbitrary baseline of 2005. How can we reward those early adopters, as well as encourage late adopters to get on board?
My third and final point is there are many creative minds looking for the next great carbon-saving environmental solution, but as we brainstorm, let's not lose sight of the trade-offs. One example that comes to mind is proposals that involve the removal of crop residue from fields to produce energy. This would serve to reduce the amount of carbon returned to the soil and ultimately result in a net loss of soil carbon as carbon dioxide. We need to think about agriculture as a system.
Henry Janzen from Ag Canada most eloquently described the soil as a conduit for the soil energy captured through photosynthesis. If we lose sight of the full cycle we run the risk of undoing past benefits or worse.
In closing, Prairies researchers and our farmers are already part of the climate change solution and are willing and able to do more, but we need the right tools to track our progress, the recognition that there is no one-size-fits-all approach for a country like Canada, and the policy to support meaningful action, including recognition of what’s already been done. Together we can and will dig deeper and explore new ways forward.
Thank you.