Good morning.
I am the project integrator for the final phase of IEA GHG Weyburn-Midale CO2 Monitoring and Storage Project. I work at the CANMET Energy Technology Centre of Natural Resources in Devon, Alberta.
This morning I'm going to make a brief presentation about carbon capture and storage in the Canadian context. I'll be pleased to answer any questions on the material covered in my deck during this meeting.
The first slide gives a brief summary of the need to store CO2 over the long term. As we've all heard, the recent IPCC summary reports made it abundantly clear that we are having a real and measurable influence on the earth's climate by emitting CO2 during fossil fuel combustion. In order to slow or reverse that impact we must decrease the emissions associated with human activities.
CCS, or carbon capture and storage, is just one in the basket of options we must employ to reduce CO2 emissions that are accumulating in the atmosphere. Other options include energy efficiency, alternative and renewable fuels, non-emitting sources of electricity, and terrestrial sequestration. CCS offers us the opportunity to maintain economic growth while reducing emissions, and we are well on the road to its widespread deployment.
CO2 can be captured from large stationary sources of either the flue gas stack or through modified combustion technologies. CO2 capture, as we've heard, is the most expensive step in capture, transport, and geological storage.
History has shown us that research and development, and experience through doing, will bring down the cost as we develop new and innovative capture technologies. We have plenty of experience in North America with transporting CO2 from source with a considerable existing infrastructure in the United States and a pipeline being proposed in Alberta. We are confident from past experience and pilot and commercial operations that we can store CO2 in deep geological formations for a very long time.
In Canada we have identified a large total storage capacity in sedimentary basins. We have enough capacity to last hundreds of years. To put that in perspective, in 2003 Canada's large emitters vented just over 400 million tonnes of CO2 into the atmosphere.
CO2 can be stored in partially depleted oil reservoirs through enhanced oil recovery, depleted oil and gas reservoirs, deep unminable coal seams, and deep saline formations. The estimated volumes of storage capacity in Canada are shown in the figure on the slide labelled 3. Note from this graphic that storage will take place mainly at depths exceeding one kilometre below the ground surface.
A sedimentary basin not only offers pore space for storage, but provides several impervious regional trapping seals or layers of rock between the storage reservoir and the surface. This assures us that CO2 will remain underground.
The slide of a map of the western Canadian sedimentary basin shows we have an ideal geology in western Canada for the storage of CO2 underground. More than 50% of Canada's stationary CO2 emissions are in close proximity to these storage locations. The western Canadian sedimentary basin extends from northeastern B.C. to southwestern Manitoba. There is also some storage potential in sedimentary basins in other provinces outside western Canada, namely in Ontario and Nova Scotia, but they offer considerably less than western Canada. The pipeline proposed for Alberta will consist of a network and backbone infrastructure linking sources to storage sites, initially connecting relatively pure CO2 sources with nearby EOR fields.
Straight CO2 storage without production of an economic resource such as oil is currently facing high-cost and technical uncertainty, making it prohibitive for industry to pursue this alone at large scale. I say “technical uncertainty” because we only have a few instances of large-scale CO2 storage in deep saline formations to draw experience from. Statoil's Sleipner gas operation in the North Sea comes to mind as an exception. It's a fairly large-scale operation and has been running for about 10 years.
Provincial regulations exist for transport and injection of CO2 into geological formations. Research and development is under way to further increase our confidence in the long-term safety, reliability, measurement, and validation of the storage of CO2. We will likely find we need to enhance existing regulatory frameworks to account for the long-term nature of this activity.
Public acceptance of carbon capture and storage is key to widespread deployment. We must engage the public now rather than being perceived as holding back or hiding information.
We are a global leader in carbon capture and storage, as has been clearly shown by the previous speakers. We have a large number of nationally and internationally engaged technical and policy experts from governments, industry, universities, and NGOs. An example of our leadership is the Weyburn-Midale CO2 monitoring and storage project, in which, as Dave Hassan has covered, we're taking CO2 by dedicated pipeline from North Dakota and storing it in an EOR field. The associated international monitoring project has shown that the natural geological setting for that particular field is sound.
Canada is well positioned for widespread deployment of carbon capture and storage with the recent completion of NRCan's CCS technology road map and a number of key demonstrations and commercial operations at various scales. We anxiously await the findings and recommendations of the recently established Alberta-Canada Task Force on Carbon Capture and Storage concerning impediments to near-term widespread deployment.
In conclusion, all experts agree that fossil fuels will continue to be the dominant source of energy for many decades to come. Carbon capture and storage is one of the best ways to address both our growing need for energy and our environmental goals. Over time, technology and innovation will help to improve the efficiency and economics of CO2 capture and storage systems.
Thank you.