Thank you, Mr. Chair.
In the interest of time, I'll keep my comments relatively brief.
I want to talk about two main things. You've heard the regulatory story and what has been going on today, but I want to talk a little bit about the technology advances that are going on. We have a second panel that will come and talk about specific examples, but I thought it would be important for you to understand the research and development and the pilot projects that are going on in both the mining areas and what we call the in situ or the underground areas, to try to reduce the amount of water use, increase the amount of recycle, or in many cases, as you heard, shift from fresh water to saline water and other sources, even using solvents instead of that.
In the mining area, the chart outlines a couple of things that are going on. I know you had presenters from the University of Alberta yesterday. There is a centre there for oil sands innovation that is looking very intensely at water issues associated with that from a research and development perspective. In addition to that, as you've heard in regard to a number of other research activities that are going on, there's a very strong push right now to increase the recycle rates and reduce the amount of tailings. Some of those examples include such things as consolidated tailings—in other words, to get the water to separate out from the fine tailings much more quickly than it has in the past, in order to move it into a reclamation phase more quickly.
You'll hear in the next panel about CO2 injection, where they will put CO2 into the tailings to get it to thicken up, and about looking at things such as paste and dry tailings. In fact, there's an oil sands research tailing facility at the university that is looking at pushing the advancement of technology.
So while technology has already been demonstrated, as Stuart talked about, in projects that are in place to reduce the amount of water use, that technology thrust continues into the future to try to look at what would be possible and practical in the future.
The one that probably has the most work going on right now is the dry tailings technology. I think you probably heard about that, but really that is to get to what they call a trafficable--you can walk on it--type of reclamation much more quickly. Shell, Chevron, and Marathon have the $100-million pilot project at Muskeg River, the plant that you flew over on Monday.
As well, NRCan is directly involved, and you can see some of the pictures from the NRCan studies with Syncrude and Suncor that really have the pilots scaled towards these dry tailings. It has not been perfected yet. It's not completely there, but it is getting much, much closer, and the research continues to go on.
Today, that's about 20% of the resource in the mining area. The other 80% is in the in situ area. That's the future resource. Production today is about half and half: about half the oil comes from mining projects, and about half of it comes from in situ.
In the in situ projects, there are some very exciting technologies going forward that will reduce the total environmental impact, including in terms of water. The one that we've shown on the top is the in situ combustion. We have them presenting on the second panel, and they will talk about how they will use underground heat in order to avoid the use of water and still recover the bitumen coming forward. There's no steam that is required for that process at all, and it is up and running, as you'll hear from Petrobank in a few moments.
Other areas on the in situ side of things that are very promising advances, in addition to the shift to saline water, include using solvents, reducing the amount of water or steam that is required, and using things such as propane to be able to get that thick bitumen thin enough to be able to come up the well to the surface. This has really shown some good promise and is done in some pilot projects at this point in time. They're even looking at potentially using full solvent recovery, which would replace water completely, and being able to recover the bitumen that way as it moves forward. That has been done at the lab scale but hasn't yet moved out into the field.
So there are some technological advances that I think are really promising, that continue to push the technologies, as they have in the past. Technology has been a real key to unlocking this resource, but also is a key to the environmental protection.
I'll just quickly summarize. As you have already heard, the balance for us is really critical. We recognize that the water resources are very valuable and need to be managed appropriately, need to be balanced with economics and the environmental and social aspects of development.
To put it in context, in 2008, for example, the oil sands industry used a little more than a third of the amount of water used by the city of Toronto, and that produced about half the oil being produced in Canada. Even if we project into the future, as Don talked about, if we look at maybe 3.3 million barrels a day, and with the decline in conventional oil, about 80% of our oil in Canada would come from the oil sands. At that point in time, we also know that's going to be capped off at 2.5 percentage points of the annual flow of the Athabasca River, in addition to these new technologies on the in situ side of things. So we think we can achieve the balance and we know we need to continue to improve.
We talked about the regulation. The water use and the related impact such as quality are regulated by both federal and provincial authorities, and there's extensive monitoring in place that comes from the governments, as well as from government multi-stakeholder and industry associations that look at that quality on a regular basis and make that information and those reports available to the public.
I already mentioned the split between mineable and in situ, but I also want to come back and say that there has already been significant improvement in water use. We really are striving. There are economic as well as environmental reasons to reduce the amount of water and to increase the amount of water recycled. We can use the water over and over again after there is an initial draw-in. In many projects we're up to greater than 85%, and some of them are up to 95% recycled water. They draw on the water, but then they use it continuously throughout the life of the project.
Last, I want to emphasize the point on technology. Technology has already shown significant gains in helping us reduce the amount of water, finding technologies that don't need water, and pushing those technologies forward. It will still be a critical part of achieving environmental performance into the future.
I'll keep my comments short and turn the time back to you, Mr. Chairman.
Thank you.