Let's look at the second slide.
I want to make sure we're all on the same page in terms of what the meaning is of the words “green chemistry”.
Green chemistry is the design of chemical products and processes that reduce or eliminate the use and generation of hazardous substances. The important word here is “reduce”, because it makes it a comparison. Green chemistry is not an absolute. Nothing is absolutely green in any way at all; it's always a comparison. Green, as an adjective, means “less hazardous than what was used before”, and therefore, it must be a comparison between two or more things. You cannot have a single object that is green. This is a source of a lot of misunderstanding with the public and even in scientific papers where they claim that something is green. Sometimes it's misleading because they have not done a valid comparison.
Green chemistry differs from pollution control and also from pollution prevention because green chemistry emphasizes design or redesign to avoid the use or generation of hazardous substances, rather than emphasizing a mechanical means to collect pollutants before they leave the factory. We'd rather not have the pollutants generated in the first place.
I have four suggestions on how to foster innovation in green chemistry, and I'd like to talk about each of those four during my 10 minutes.
First, we have the idea of strengthening the funding programs that are most successful at leading to new technologies in the area of green chemistry and innovative new technologies. In my mind, this has been for a long time the discovery grants program within NSERC. It has been responsible for most of the new ideas being generated at chemistry and chemical engineering departments across Canada.
The other programs at NSERC are valuable for taking those technologies further, but it's the discovery grants system that funds the initial discoveries. This is something I've seen and something that GreenCentre Canada has seen across the country. The discovery grants system is crucial to continuing innovation in the area of green chemistry in Canada.
It's crucial because if professors have only a grant, and this is the one they have, it's a flexible program. I used to be a researcher at the University of California, Davis, where I was a professor. The American funding system is inferior, in my opinion, because they don't have an equivalent program to the discovery grants. Discovery grants are flexible. If you find something that's better or greener than what you originally proposed, then you are allowed in Canada to pursue that, whereas in the U.S. you would be prevented from doing so.
Second is the need to build a better commercialization pathway. Professors like myself, or others across Canada, who find a new and green technology due to their research often have a difficult time getting it commercialized. Even though Canada is, in my opinion, world leading in the area of green chemistry research, we're not world leading in terms of commercialization, and this is not restricted to green chemistry.
The problem is the method by which we commercialize the technologies. For example, if an academic professor in chemistry has invented a new technology, we cannot only have that discovery, we can prove it works in a beaker on a bench, and we can make grams of sample. I've had this experience several times. One time I invented a new surfactant, and companies called me and said, “This is wonderful, we think this is great. We want to commercialize this, and license this technology. Can you give us 15 kilograms of sample, and can you tell us it's going to work on our oil field?” I said, “I can make you 15 grams, but I have no ability to make kilograms, and I have no idea about your oil field”. Then they walk away after saying, “Call us back when it's ready”. This is an example of what happens. There is a gap between what the professors are able to do and what industry is hoping to have before they're willing to run with the technology. There is a lot of de-risking, scale up, and further optimization that needs to happen before these technologies can find ready uptake in industry.
The next slide shows the reason I worked with Rui Resendes, who was a tech transfer officer at Queen's, to create a new entity called GreenCentre Canada, which did receive CECR funding from the federal government.
This is a centre for doing that middle work, that work that's required to take it from the point up to which professors can and do that middle scale-up, de-risking, optimization for industrial applications, intellectual property protection, and negotiations with industry, all that middle work that is difficult for professors to do. We have labs in Kingston. We have a scale-up facility in Mississauga. This is one model, but certainly not the only model that one can have to make a better pathway to get green technologies commercialized.
If you go to the next slide, I would like to talk briefly about barriers to commercialization of new technologies. It's not just the commercialization gap that's slowing down the commercialization of green chemistry technologies; there are other problems. For example, suppose someone has invented a new surfactant that's far more powerful. For those of you who are not chemists, a surfactant is a compound that will help oil and water mix and is very useful in many formulations such as shampoos and soaps. Suppose someone has invented a new surfactant which is much more powerful than an old surfactant. Let's call this new surfactant A. It is twice as damaging to the environment and health as the old surfactant B, but it is so powerful that you only need to use one-tenth of the amount to get your shampoo or formulation to work.
Overall, the shampoo is five times less damaging to the environment and health using this new surfactant than using an old one, but with regulations and guidelines in the U.S., and I expect in Canada as well—and I hope you're more familiar with these than I am—the problem is that they're often based upon the compounds and not the formulation. A compound such as surfactant A would be less likely to be approved because it is more damaging per gram than the old surfactants, or maybe more damaging compared to some kind of a threshold cut-off. The fact that the amount needed is far lower is not necessarily taken into account in the regulations.
How do you solve this? I think you solve it by using performance-based regulations, where you take into account the amount used, so something that is slightly more damaging per gram but is far more effective and less is needed would be taken into account. Therefore, if we want toxicity reduction, we shouldn't regulate how that toxicity reduction or environmental harm reduction is achieved, but rather regulate the outcome. The shampoo or whatever should be less damaging to the environment rather than the individual compounds.
It's the same for technologies. We could regulate. Instead of saying that you must use technology A, say rather, “We want you to meet performance measure A.” Then different ways of achieving that performance and that harm reduction can be considered by industry.
If you go to the next slide, there is another scenario that can inhibit the adoption of new technologies. Regulations that require certification of new chemicals or technologies, such as the one that you guys are currently reviewing, can make it risky and expensive for industry to adopt greener chemicals. For example, if industry for some application could use chemical A, which is more damaging to health and the environment, but is already certified and has already gone through that process, or chemical B which is believed to be much less damaging to health and the environment but is not yet certified, then industry will be more tempted to go with chemical A despite the benefits of chemical B, because the extra cost and extra risk of obtaining the certification is a barrier and a disincentive to adopt a greener technology. How do you solve this? We have to incentivize industrial partners to participate in the de-risking of the newer chemicals and the newer technologies.
GreenCentre does help with the optimization and early scale-up, but it is certainly not funded well enough to handle more than one pilot project at one time, because the pilot plant development is too expensive, so GreenCentre is not big enough to do more than one at a time.
NSERC funds development work, but the funding tends to fade out once you get to pilot stage or beyond. In my opinion and that of other people at GreenCentre, the development process and the funding for it is weakest at the pilot and post-pilot stage, where the extra expense and the extra risk of new technologies versus older compounds or technologies intimidates—