My name is Frank Prato. I'm an assistant scientific director and medical imaging program leader at the Lawson Health Research Institute. The Lawson Health Research Institute is one of the largest hospital-based research institutes in Canada and the research institute for the two teaching hospitals in London, Ontario.
I became interested in 1982 in non-ionizing, non-thermal effects when I introduced here in Canada magnetic resonance imaging. We produced the first image in Canada using magnetic resonance imaging in 1982, and I became interested in the potential of non-thermal effects as a result of exposure of biological systems to non-ionizing electromagnetic fields.
I have continued to work in this area and have published about 100 publications. I have some credentials in terms of international credentials. I'm the past president of The Bioelectromagnetics Society, which is the largest society investigating non-ionizing electromagnetic radiation. I'm chairing, for the seventh year now, the Canadian National Committee of the International Union of Radio Science, which is a National Research Council of Canada committee of a scientific union called the International Union of Radio Science. This union looks at applications of non-ionizing electromagnetic radiation. And for the union worldwide, I was a commissioned chair for Commission K, which looks at biological effects of exposure to a non-ionizing radiation.
Given this background, I've been very interested, but my interest generally falls outside of the frequency limits associated with Safety Code 6, which start at three kilohertz. Most of my interest has been at lower frequencies in what is called the ELF range, the extremely low frequency range of around 300 hertz and lower, including frequencies like 50 hertz and 60 hertz that are associated with electrical power transmission.
However, in this area, I published in the international journal of the Royal Society, called Interface, in 2013, that exposure to 30-hertz—which, again, is well below the three kilohertz associated with Safety Code 6—ambient electromagnetic fields generated by humans do have effects on biological systems. These were experiments that needed to be carried out under shielded conditions; however, they are not relevant because they fall below the frequency limits associated with Safety Code 6.
I would like to say a few words about non-thermal RF effects below Safety Code 6 limits within the frequency range. There have been a number of problems with this literature as Mr. Adams alluded to. There are three major problems with this literature at this point in time. One is that the effects have been small; two, that there is no established mechanism, and in fact there are a number of people who claim there are no possible mechanisms with such weak energy fields; and three, that there are issues with reproducibility. Reproducibility issues aren't surprising, given that we don't really understand the mechanism.
However, there was an article published very recently in Nature , on May 15, 2014, after the release of our article in the Royal Society review, entitled, “Anthropogenic electromagnetic noise disrupts magnetic compass orientation in a migratory bird”. So these are clear non-thermal effects of RF within the range of Safety Code 6 safety.
Now we are getting more and more literature that suggests that very weak fields, below the limits set by Safety Code 6, can have biological effects. Of course, we don't know if these effects occur in humans, and we are not stating that they are detrimental. They were obviously detrimental to the birds in the urban population because it interfered with their ability to sense the earth's magnetic field for a proper orientation and homing.
The question that arose with respect to the discussions of the Royal Society committee on Safety Code 6 is why we cannot set limits for non-thermal effects. I draw you section 7.8, the last paragraph, which says that “it is not known how the reported effects scale with exposure parameters.”
With heating effects, there is a very straightforward metric that we can evaluate and determine what the energy deposition is and what the probability is that the exposed tissue or organism will have a detrimental, perhaps, increase in temperature, but we do not know what the scaling metric is for these non-thermal biological effects.
The definition of non-thermal was also discussed in the Royal Society report. I'll remind you that in that report, we basically said the definition of non-thermal is a bit difficult, but at least we can talk about effects below the limits for Safety Code 6 as being those that would include non-thermal effects.
I'd also like to point out that in section 10.2 of the Royal Society review, the second-to-last bullet says that “Health Canada should pursue research to expand our current understanding of possible effects of exposure to RF energy at levels below SC6.”
What I am saying, as a researcher, is that there are now well-established effects in some animals of exposures below those of Safety Code 6. At this point, there is no strong evidence—there is some evidence—that similar effects are reliably reproduced in humans. Also, there is no evidence that these effects would be detrimental to humans if, in fact, they occurred.
Let me point out that the more recent literature that has come out in the last six months or so, and some literature building up to that, suggests some of the studies are quite flawed in this area, because it turns out that magnetic and electric fields produced in the environment do have biological effects. When people have been doing experiments like having one group of individuals with cellphone exposure, and another group just in the lab without cellphone exposure but, say, with sham cellphone exposure, they are still being exposed to magnetic and electric fields which are in the environment. We have evidence now in animals that those magnetic fields generated by humans do have biological effects in a number of species, including mice and birds.
That's basically what I am saying. I am trying to explain why at this point there is not enough information to even consider setting limits for non-thermal effects, because the mechanism is not known, and therefore we don't know how the effect scales. It may not scale at all with respect to the intensity of the exposure.
From my point of view, and from my knowledge in this area, if there are questions, I'd like to respond to the Royal Society review with respect to section 6.5, which deals with magnetic resonance imaging; section 7.8, which deals with low-level and non-thermal effects; section 7.9, which is about possible effects on stress protein expression; and section 10.2, the last bullets only, which are the summary of the recommendations that I have already referenced. Of course, I would be willing to answer questions in terms of what research still needs to be done for “non-thermal effects.”
That's my statement.