Very good. I'll pull direct quotes, then, in that instance.
The IARC working group—this would be the first document you'd be looking at—has a single-page summary of evidence leading to the 2B conclusion in 2013, based on the 2011 meetings, and 2B means “possibly carcinogenic to humans”. What the IARC means by that is, and I'll quote directly from their preamble:
This category is used for agents for which there is limited evidence of carcinogenicity in humans and less than sufficient evidence of carcinogenicity in experimental animals. It may also be used when there is inadequate evidence of carcinogenicity in humans but there is sufficient evidence of carcinogenicity in experimental animals.
The document itself makes reference to a number of different studies that were broken down into occupational, environmental, and personal exposures. The studies that the committee thought presented the strongest evidence were specifically the case-control studies that have been referred to. INTERPHONE has been mentioned. The Swedish studies have also been mentioned.
It's important to understand what a case-control study is. As has been pointed out, the real way to find out if something is a health risk is, prospectively, to look over time at individuals who are experiencing the exposure, documenting rates of conversion to disease in the exposed versus the non-exposed, and then see if there's a dose-response relationship. In other words, do individuals with higher levels of exposure to a risk convert to disease at higher rates? As far as I'm aware, this sort of information is not available in human populations for RF-EMF, so we do the best we can with case-control studies.
Both the INTERPHONE and the Swedish studies relied on interviewing individuals with glioma, with acoustic neuroma, and then interviewing random controls. What they found was that in individuals with these neoplasms, or cancers, was that the individuals report higher levels of exposure than controls. The question of recall bias is really important in a study like this, because we're relying on indirect lines of evidence to conclude what the exposures might have been. These folks weren't carrying detectors on them for years and years. These are telephone interviews, questionnaires.
The important thing which IARC, to its credit, acknowledges, is the potential for what's called “recall bias”. In other words, if you have a catastrophic health outcome, you will naturally search for causal evidence for that outcome. If a well-funded scientific committee wants to talk to you, then the implicit suggestion may be that it thinks there might be a link there. As a result, anxiety rises, and it's not very difficult to imagine how individuals with a glioma might report, “Why, yes, I believe I did have higher exposure to radio frequencies.”
The IARC also concluded that although this was a significant bias, they couldn't completely rule out these studies on the basis of bias. What they concluded, therefore, was that there's limited evidence of carcinogenicity, meaning the quality of the evidence is limited.
I want to point out what a 2B means. The IARC, again in its preamble on page 23, says the following:
This category is used for agents for which there is limited evidence of carcinogenicity in humans and less than sufficient evidence of carcinogenicity in experimental animals—
Wait. I've gone a bit backwards. I've already read that part.
I want to talk about what IARC means by “limited evidence”. The data suggest a carcinogenic effect, but it is prevented from making a definitive evaluation because, and I think in this case paragraph 6(b) is the most important, “there are unresolved questions regarding the adequacy of the design, conduct or interpretation of the studies”.
Of course this is an important signal within the literature and it's one that needs to be pursued, and indeed it has been pursued. The just-published 2015 text, Current Understanding and Treatment of Gliomas, which is available from Springer, the medical publisher, contains a book chapter titled, “The Epidemiology of Gliomas”; in other words, the causes and distribution of this disease.
Page 11 of that book reads as follows:
The scientific evidence used to produce the 2011 IARC report, as well as the scientific evidence reported since its publication does not support a significant association between use of cellular phones and risk of glioma. This exposure warrants continued monitoring and examination, as the potential risks of long-term heavy use, risk of use during childhood and adolescence, and length of glioma latency is not well understood.
However, the studies so far, in fact, would suggest against an association. Even in 2011 the strongest association that could be found was actually very weak.
Just to put this into some context, because I think Bill C-648, which in its own preamble specifically mentions the 2B classification as being relevant, there are currently 287 agents within category 2B. Essentially, if you cannot definitively exclude a risk, then you have to consider that it's possible. I'll give you some examples of what appears as possible carcinogenic agents: whole leaf extract of aloe vera, carpentry and joinery as an occupation, coconut oil, coffee, ginkgo biloba extract, kava extract, pickled vegetables, and talc body powder used perineally—in other words, baby powder.
The problem of scientifically proving a negative is very difficult. I can't prove to you that Santa is not real, because I'm not at the hearth of every single home on Christmas Eve. So from a purely scientific epidemiological point of view, I must concede it is possible that Santa Claus exists. But given the fact that scientifically I have to concede that possibility, it would be problematic to conclude that there is scientific evidence that Santa possibly exists. No, there is not sufficient evidence to completely refute it.
Epidemiologically speaking, that is how these studies are meant to be interpreted. Of course since, as the previous witness pointed out, the outcome is catastrophic, ongoing study is warranted. Studies to date, based on the latest and greatest evidence from glioma researchers and treaters, suggest there is no significant association.
As I said in my appearance before the Royal Society, I think Safety Code 6 is currently an adequate and satisfactory standard. I don't believe it needs to be changed. I believe if the committee wants to apply labels to RF-emitting devices on the basis of a 2B classification, then the door is open to labelling all 287 agents on the basis of their 2B classification. I don't know if that's territory into which the state wants to intrude to such a significant degree.