Again, I apologize for the technical problem.
I was making the point that to be prepared for the next challenges in infectious diseases, we need to invest and develop a vibrant community of scientists, clinicians, engineers and social scientists who will dedicate their careers to solving our current problems and the ones that we know will emerge. However, given the lack of sustained funding in this area, our best and brightest young researchers and clinicians do not see great opportunities to thrive by studying infectious diseases. We do not have sufficient support to maintain our existing key facilities such as the biosafety level 3 labs that are so important today, let alone expand our capacity in an emergency.
I want to be clear that I'm very grateful for the funding that my team and I have received from CIHR to address the COVID-19 crisis. We're working with a great team of virologists, chemists and experts in human responses to infection to find new candidate drugs to treat COVID-19, but this is challenging, as you can imagine, in the midst of a pandemic. Had we invested in the past in programs that sought to build these teams and support them, we might have been in a position to lead the globe in this crisis. Canada can and should be leading the world in infectious disease research.
This takes me back to AMR, the other pandemic we're now experiencing, a known known. No one can argue that antibiotics haven't changed medicine, perhaps like no other group of drugs has. Antibiotics not only cure infections caused by bacteria; they have enabled much of the progress in modern medicine over the last 75 years by being there to prevent infection. For example, in major surgeries, cancer chemotherapy, organ transplants or hip and knee replacements, antibiotics are used to make sure that these procedures occur infection-free.
Imagine where we'd be without these miracle drugs. It's actually pretty easy to imagine. We'd be exactly where we are right now with SARS-CoV-2, with no therapies and all the devastation that results. Ironically, we may face even more pressure in AMR due to the current pandemic as we deploy more of these drugs to avoid secondary bacterial infections, and due to untested claims of the use of antibiotics such as azithromycin in COVID-19 therapies that put pressure on drug supply and derail antibiotic stewardship efforts.
We haven't had a new class of antibiotics since the 1980s. Since then, bacteria continue to evolve and have become resistant to, actually, all of our drugs. Paradoxically, the pharmaceutical industry does not see antibiotics as profitable, and they have systemically shut down antibiotic discovery programs over the last 15 years.
At McMaster, we're trying to buck the trend. Aided by remarkable philanthropic investments, we created the Michael G. DeGroote Institute for Infectious Disease Research and the new David Braley Centre for Antibiotic Discovery. We've built a culture of innovation and dedication to solving the most challenging infectious disease problems we face today, including AMR and now COVID-19. The team is multidisciplinary. It spans medicine, biology, chemistry, math, engineering, computer science and social science. This is essential to respond to future waves of COVID-19 and future pandemics.
In closing, I'd like to again express my gratitude for the rapid research funding programs that have been deployed to address the current pandemic and for the unity of the House in supporting these investments. I can assure you that the researchers in our teams, who I note include many young people—graduate students, medical students and post-doctoral fellows—are working day and night to solve this problem.
What I, frankly, worry about is what's next for these amazing young people. They are our firefighters, but are we prepared as a society to invest in a world-class fire department for them?
Thank you, Mr. Chair.