Semiconductor silicon chips have always been hydrogenated to form silicon hydrogen bonds. What happens with deuterium is that instead of using light or normal hydrogen, if you use heavy hydrogen or deuterium, which weighs at a higher atomic mass, there's a unique chemistry that occurs between silicon and deuterium. There's a bond relaxation energy that occurs and a microchip that's been annealed in a deuterium atmosphere can actually take far higher temperatures, operate in more rugged conditions, and not break down, a longer life microchip. It will help enhance Moore's law of whatever it is: every year and one-half you double whatever the number of circuits on a semiconductor. Should that continue on to six or seven nanometre-size microchips, deuterium is a fundamental there.
Isowater's role, again, is to provide that to these companies to capture their spent or downgraded deuterium from the annealing oven and recycle that back at an enriched level to them. We would be focused on enabling that application, because right now a lot of the semiconductor users of this are concerned about where the supply of deuterium oxide or heavy water is going to be. It's just a major unknown to develop a semiconductor plant not knowing if your raw materials will be available.