Thank you very much, Mr. Chairman.
We have an eight-page presentation. There are some copies here. Because of the time, I will just go through some parts of it.
First, Mr. Chairman and members of the committee, thank you for your invitation to speak with you today. I'm here on behalf of hundreds of researchers and students developing new and emerging technologies at the University of Waterloo in collaboration with colleagues across Canada and around the world. As dean of our country's largest engineering school, I'm also fortunate to work alongside some of Canada's brightest young entrepreneurs and to consult with many of our country's industry leaders.
Harvard Business School professor Clayton Christensen coined the term “disruptive innovation” in 1995. Twenty years later, we fully appreciate how new technologies can shake up industries and create completely new markets. We see the consequences of two major 20th century innovations, aviation and telecommunications, in the full force of globalization and the information revolution. The difference today is speed of adoption. It is moving faster than ever before. You can no longer speak in terms of speed but acceleration.
So how does Canada stay on the fast track? With half a per cent of the world's population, we can't do everything, but where we excel, we can lead.
The federal government's recently published science, technology and innovation strategy identifies several disruptive technology areas as priorities, including information and communications technologies, energy and advanced manufacturing. This demonstrates a strong will to prepare our country for the future. I think 21st century disruptions will be led by organizations with the agility to react quickly to new opportunities. We'll develop entirely new technologies, but equally important, we'll adapt technologies in powerful new ways. Those who can stay ahead will be those who can build off and integrate multiple innovations to engineer practical solutions to some of the world's most pressing challenges.
Two research areas that promise enormous economic impact are ICT and energy storage. As you have heard from Industry Canada, the disruptive impacts of ICT spread far beyond IT and the communications sector. Inexpensive new sensors wirelessly transmitting data for analysis will revolutionize environmental monitoring and personalized health care. Aside from the potential health care savings, this technology will be particularly critical for rural and remote Canada. Another ICT impact will be in the connected car.
The overarching impact of ICT is encapsulated in the emerging Internet of things, or IoT, whose potential is highlighted in the government's STI strategy. Expect a future of cyber-physical systems. Technology titans such as Google, GE, Cisco, Intel, Microsoft, IBM, Qualcomm, BlackBerry, Telus, and Samsung are investing billions of dollars to own the Internet of things podium.
The most significant advance in addressing global energy challenges may come in energy storage, a real game-changer for the utility and transportation sectors. Research into energy storage demonstrates the interconnectedness of innovation, linking to other disruptive areas such as smart materials, nanofabrication, and 3-D circuit printing. Over the coming decade, countless IoT sensors, microprocessors, and wireless nodes will need new low-cost, longer-life batteries and energy harvesting technologies.
Already we're seeing commercial energy storage systems with the potential to dramatically change our traditional approach to electricity. Tesla Energy recently announced that Powerwall and SolarCity systems, for example, are rapidly building towards reliable 24-hour solar power for homes and businesses, and they're available off the shelf. ln the longer term, new battery materials like lithium-sulphur will power electric cars three times further than current batteries and at a much lower cost. Both these technology movements will impact horizontal markets creating new services and sectors. They will transform our manufacturing base.
I'll turn now to the heart of innovation.
As a teacher, researcher, and administrator for the past 25 years, l've observed that innovation ecosystems matter, but original ideas provide the essential fuel. Disruptors of the future will be those who can tackle truly difficult technical problems and produce solutions with significant scale-up potential.
If people worldwide can access the new technology quickly, global markets will be transformed. Over time, new technology will itself be disrupted. Of course, we need to maintain a continuous flow of new ideas.
Curiosity-driven research is essential; it is the ultimate source of all new technologies. Strategic initiatives targeting areas with high potential are equally important as they offer competitive differentiation. The roots of truly disruptive innovations, in my view, lie in exceptional technical talent, with men and women who have great ideas and who can execute them. If we can incent them to take ownership and translate their ideas into prototypes with real market potential, we can create a deep culture of innovation.
Global competition for highly skilled talent is very real, dividing the future's technology leaders from the followers. Technology hubs are rapidly emerging in major cities around the world, but the Silicon Valley remains at the frontier, particularly in the area of ICT. However, there is an interesting Canadian story behind it. Last year more software engineers and developers in the Silicon Valley were hired from Waterloo than from any other school in the world save U of C Berkeley—more than MIT, more than Stanford. For these young minds, the world is their oyster. We must build a thriving home for this generation so they can reach their aspirations here in Canada. They are the future of the country.
Deploying new technology can be risky for industry, and it's particularly challenging given the risk and the current pace of change. The infrastructure investments and resources needed are very large. Canada's geography poses unique challenges, but we can create critical ecosystems that cannot be readily reconstructed by competitors.
The co-operative education program at the University of Waterloo provides such a model. Imagine a parallel system whereby the university acts as an anchor for experiential technology innovation. By bringing in companies of all sizes to innovate with our students, we capitalize on infrastructure, talent training, expertise, equipment, tools, information networks, and business support. This approach will enable and accelerate the first critical iteration of product innovation. With over 1,600 co-op partners and over 1,000 research partners, Waterloo engineering's experiences may offer some insights on its feasibility.
I will use the manufacturing sector as an example to end this presentation.
ln the automotive industry, the production life cycle is increasingly shorter. ln the aerospace and medical sectors, the payback periods can be significant.
As regards corporations, in today's environment, even large companies need to collaborate in open innovation ecosystems. Toyota, for example, our major research partner, has forged a recent partnership with Mazda on technology development. This is the future of shared risks.
SMEs employ over 90% of Canadians in the private sector but have scarce resources. They generally don't operate within an innovation ecosystem, but have the greatest need for support for new technologies. One disruptive technology, as you heard earlier, is 3-D printing, or additive manufacturing. lt will enable quick prototyping, proof of concept testing, and small production runs particularly suited for SMEs. This is a technology domain where Canada needs to succeed or else we risk being left behind. Waterloo is partnering with five other Canadian universities and scores of SMEs to create the Canadian additive manufacturing network. It is the future of innovation in product development.