Good morning, everyone. I'm Dawn Davidson, the associate vice-president of research and innovation at George Brown College. It's my pleasure to represent Polytechnics Canada this morning, of which George Brown is a founding member. Thank you for inviting Polytechnics Canada and me to present.
Polytechnics Canada is an association of 13 of Canada's large, research-intensive, and leading colleges, polytechnics, and institutes of technology. Polytechnics offer a wide range of advanced educational credentials including bachelor's degrees, advanced diplomas, certificates, and apprenticeship programs. We provide career-focused and community-responsive education developed in partnership with employers. Our commitment to building resilient regional economies is a key driver of our research initiatives, which commonly involve public-private research partnerships.
Polytechnics focus on collaborative applied research with our private sector partners. We typically work with Canadian companies ranging from small to large, as well as multinationals. We have an industry pull rather than researcher push model, so industry comes to the polytechnic with a real-world innovation challenge and the polytechnic provides access to the talent in the college, including our researchers, technologists, faculty, and students, state-of-the-art facilities, and our extended networks to help deliver an innovation solution.
I'll use a previous partnership at George Brown to illustrate a typical tech transfer scenario at a polytechnic. In 2011 the Colleges Ontario Network for Industry Innovation, which is now part of the Ontario Centres of Excellence, introduced Clear Blue Technologies to George Brown as they needed assistance to develop their smart, off-grid, solar/wind controller for community infrastructure. Clear Blue was a start-up company at the time with a small team, and they lacked all of the in-house expertise and infrastructure necessary to develop their product. We provided complementary expertise to that which was already on their team, and worked alongside them to develop components of their system with our prototyping facilities. In this way, technology transfer was completed to the Clear Blue team, both informally through working alongside one another, and formally via the delivery of technical reports, specifications, and their prototypes.
Over the last 10 years George Brown has transferred technology and knowledge to private sector partners on over 500 applied research projects in a similar manner. Technology and knowledge is also disseminated via workshops, symposia, and conferences to the broader community. This facilitates technology diffusion, the adoption and adaptation of technology, which contributes to innovation gain for our country's homegrown firms. An example of this is that at George Brown we have strong capacity in building information modelling, or BIM. In addition to collaborating with companies on applied research, we disseminate the latest information on BIM via workshops, which helps our partners fill skills gaps on their teams to ensure that they're able to adopt the results of applied research.
Polytechnics adhere to a working principle that intellectual property is best exploited by the private sector, and we have similar industry-friendly IP policies and practices in place across all of our membership. I'll go back to the collaboration with Clear Blue to illustrate this. Clear Blue signed George Brown's standard one-and-a-half page memorandum of understanding, which outlines the ownership of IP arising from a project with the polytechnic. With this agreement all forward IP was assigned to Clear Blue and they were responsible for exploiting and protecting the IP. George Brown retained the right to use the research results for academic purposes, and our students were able to acknowledge their participation on the project on their resumés. With unencumbered IP, Clear Blue Technologies has rapidly commercialized their product. They're selling it in 29 countries, 19 U.S. states, and 7 Canadian provinces. They've generated revenues and created new jobs for Canadians.
I understand that the committee is also interested in how we work with other academic partners and industries, so I'll provide one example of this. I'm happy to take further questions later. RZR Skate Blades is a Hamilton-based company that designs and manufactures custom advanced-performance hockey skate blade runners. RZR's product follows a classic hockey skate blade design, but combines high-quality aerospace-grade stainless steels with the latest technology and custom precision manufacturing processes to yield a product with superior performance, strength, and durability.
The project involved collaboration among RZR, Brock University, and George Brown in order to assess the performance of the runners from two complementary perspectives, the first at Brock University, where they did an on-ice performance testing, and the second at George Brown, where we characterized the materials and did testing on the materials themselves. The results provided RZR with empirical support and validation of the value-add of their proprietary process and will enable them to accelerate market adoption of their product.
These examples exemplify the advantages of polytechnic IP policy and practice commonalities for industry, including the following: industry exploits IP unencumbered by the partnership; industry, in working with multiple polytechnics, finds that we have similar IP policies, which simplifies things; there's clarity with respect to the ownership of IP right up front; the time to negotiate project agreements is minimized; and IP is not an impediment to industry-academic research collaborations.
To close, I want to urge the committee to ensure your study of IP policies and technology transfer issues accurately differentiates the kinds of responses that Canada's post-secondary institutions have to a company's intellectual property needs. With polytechnics, the emphasis is clear and simple: we're not motivated by generating revenue from IP. We're motivated by having access to real-world innovation challenges that can become part of the applied learning that we offer to our students. This IP-friendly approach explains why so many firms turn to applied research offices for support as they work through the commercialization process. To date, federal policy has not adequately captured this differentiated logic.
I welcome your questions.
Thank you very much.