Thank you, Mr. Chair.
First, I would like to thank you for giving me the opportunity to talk to you today.
As the Chair has just said, I am the Scientific Director of the Quantum Institute at the Université de Sherbrooke. My research deals with the development of quantum computers, and has led to the creation of four young quantum enterprises led by students.
Despite the ever-increasing power of modern computers, there are some computations of scientific, societal and economic value that are simply impossible to realize. Quantum computers promise to make some of these impossible computations possible. A quantum computer could indeed efficiently complete computations that would take billions of years with today's fastest supercomputers. For some problems, the speed-up offered by quantum computers is more modest. For others, there is no speed-up at all.
Understanding the real-world quantum acceleration that can be expected from future quantum computers remains an open question. We don't know everything yet, and answering this question is made more difficult by the fact that we don't have fully functional quantum computers.
However, fundamental research and technological development towards the realization of these computers is accelerating at a phenomenal pace. In the last few years only, we have already gone from very rudimentary devices to small quantum computers on the cloud. These devices can be used to test new ideas and to develop new applications. The price of entry to contribute to the field is no longer a Ph.D. in physics.
Although the current generation of quantum computers is still too simple to run large-scale computations, quantum advantage has already been demonstrated. In other words, the current generation of quantum computers can compete for some specific tasks with today's most powerful supercomputers.
How long will it be before fully functional quantum computers become available? As already mentioned, fundamental research and technological development are still needed, and it will take time. This is to be expected. Going from transistors to our modern computers took decades.
Because its researchers are responsible for many key discoveries, Canada has a long history of excellence in the field and a solid reputation internationally. This has been made possible thanks to investments from NSERC, CFI, CFREF, CIFAR and others. This has led to a critical mass of researchers with extensive expertise and state-of-the-art research infrastructure. In particular, the CFREF funding in Sherbrooke, Waterloo and UBC gave us the resources, agility and long-term perspective needed to be competitive and has helped grow Canada's presence internationally.
Looking back, one can almost say that Canada's position in quantum research was reached by luck. It is the efforts of individual researchers and institutions using existing competitive programs. At a time when other nations are investing strategically in quantum, for Canada to follow the same approach can only lead to one thing: a smaller role for its researchers and industry on the global stage.
Of course, this is where the national quantum strategy enters and why it is excellent news. To ensure maximum impact of the strategy, there are, in my opinion, a few aspects to consider.
First it is important to acknowledge that, while it is an excellent effort, it is relatively modest compared to other nations'. I'm convinced that it can have a large impact, but it remains important to manage expectations.
Second, I mentioned that Canada's position in quantum was achieved by individual researchers and institutions using existing competitive programs. Of course, the national strategy is only now being deployed, but up until now, the investment appears to follow the same approach of relying on existing programs. There is a danger in this approach. We have limited resources and cannot excel in everything quantum. Choices will have to be made.
Fortunately, quantum science and technology are more than one idea. It is not a winner-takes-all situation. Making choices may mean that we will lose some opportunities, but not that we will lose the race. It's quite the contrary.
What are some of the important actions to take to maximize the national quantum strategy's impact? First, over technology, talent is the real quantum advantage. It is important to attract and train talent at all levels: faculty, postdocs, graduate students and technical staff. Not everybody needs a Ph.D.
At the moment, Canada's biggest export in quantum is probably talent. It is crucial to retain in Canada those who we train. At institut quantique in Sherbrooke this has been on our mind since day one after receiving the CFREF award. We have taken action for our graduate students and postdocs to receive the appropriate training and support to become young entrepreneurs and to create their own quantum startups.
The culmination of this vision was the creation only a few weeks ago by the provincial government of a quantum innovation hub in Sherbrooke with over $450 million in public and private investments. This will continue to grow the quantum ecosystem in Sherbrooke and more generally in Canada. It will help us to retain our talent here but also to become even more attractive internationally for students, companies, and investors. More initiatives like this are needed as well as support for existing initiatives.
Building on existing centres of excellence is also, more generally, an important way for Canada to remain competitive on the global stage. Over the last seven years, the CFREF quantum centres have built unique research capacity, something from which the old Canadian quantum ecosystem has benefited. Continued support for these centres of excellence will help Canada maintain its leadership.
In summary, fundamental research and technological development are needed before quantum computers are available. The timeline isn't certain. The potential is vast, but expectations need to be managed.
To have impact on the global stage, Canada needs a national quantum strategy that is ambitious, agile and makes strategic choices. This is how Canada can remain at the forefront of quantum science and technology, helping drive our country's long-term economic and social prosperity.
Thank you.