Thank you, Mr. Chair, for the invitation to speak with you today about the National Research Council of Canada as part of your study of quantum computing
I would like to begin by acknowledging that the National Research Council’s facilities are on the traditional unceded territories of many First Nations, Inuit, and Métis People. I would also like to add that I am currently located on customary territory of the Huron-Wendat nation. We recognize our privilege to be able to conduct research and drive innovation on these lands and pay respect to the peoples who were here before us.
My name is Dr. Geneviève Tanguay and I am the Vice-President of the Emerging Technologies division at the NRC. In this capacity, I am responsible for several research centres including Advanced Electronics and Photonics, Herzberg Astronomy and Astrophysics, Metrology, Nanotechnology, and Security and Disruptive Technologies.
With a doctorate in Parasitology, I have worked for various institutions such as Universities Canada, the Natural Sciences and Engineering Research Council of Canada, and the Centre Québécois de valorisation des biotechnologies. Much of my work has been dedicated to promoting technology and innovation transfer in the biotechnology sector. From 2007 to 2011, I held the position of Assistant Deputy Minister for research, innovation and science and society with the Government of Québec. I then served as Vice-Rector, Research, at the Université de Montréal, before joining the NRC in my current position.
As you may know, the NRC is Canada's federal research and development organization with a national footprint that includes laboratories in 22 locations spread across every province of the country.
In addition to doing their own cutting edge research, our scientists, engineers and business experts partner with universities, colleges and Canadian industry to help take research and technologies from the lab to the marketplace.
We serve a unique role connecting the diverse parts of Canada’s research ecosystem, responding to public policy priorities and creating opportunities that benefit Canadians.
Over the past five years, we have implemented a plan to revitalize and sustain the NRC’s role at the forefront of research and innovation. This has resulted in the creation of 9 Collaboration Centres with universities and other partners in areas such as quantum photonics, ocean technologies, green energy, AI and cybersecurity.
In addition, we are pursuing research excellence through support for exploratory work and leadership in select disruptive technologies, ensuring a more diverse workforce, revitalizing our NRC research environment, and aligning with industrial priorities in key innovation clusters.
Now I will focus in on the NRC's effort in quantum research. Through our collaborative science, technology and innovation program we aim to bring together the best minds from academia, industry and government to deliver game-changing scientific discoveries and technological breakthroughs across the innovation continuum. These cross-sector, collaborative challenge programs address current and emerging government priorities to be achieved over a seven-year time frame. Of our many challenge programs, two of the most recent ones to emerge focus on quantum. They are the Internet of things quantum sensors challenge program and the applied quantum computing challenge program.
Launched in 2021, the goal of the Internet of things quantum sensors program is to enable the development of revolutionary sensors that harness the extreme sensitivity of quantum systems to provide enhanced precision, sensitivity, rates and range of measurable phenomena. The ambition is that this new generation of sensor systems performing beyond the limits of classical physics may be engineered and commercialized for applications that benefit Canadians. To date, we have 47 agreements under development with many industry partners. The main areas of focus for this challenge are quantum photonics, chip-based quantum systems and quantum metrology.
NRC's most recent challenge program, which will be launching in 2022-23, will be concentrating on applied quantum computing. The goal of the challenge will be to support commercial and government innovations in quantum algorithms and applied quantum computing. The program is being developed in alignment with the development of the Government of Canada's national quantum strategy that Nipun just spoke about. It will support quantum initiatives across the Government of Canada by working with federal departments, agencies and Crown corporations to explore applications of quantum computing for public service operations and program delivery. The anticipated areas of focus are quantum algorithms, quantum simulations, and models and architecture.
We are also addressing quantum communication in a third Challenge program, which deals with high-speed secure networks. The objective is to develop and deploy quantum communication, including quantum key distribution and quantum satellite communication.
By hosting these challenges, we hope to support Canada’s ambition to grow quantum-ready technologies, companies and talent; and solidify Canada’s global leadership in this area.
Thank you for your time. I will be pleased to answer any questions.