Thank you, Mr. Chairman.
I would like to thank the committee for inviting me here and for giving me the opportunity to speak on what is a very important topic, namely, how do we keep the strategic lead we have in quantum technologies here in Canada into the future?
I and my colleagues, many of whom have spoken to the committee already, have really addressed the fact that we've enjoyed close to 25 years now of really fantastic support and funding across quantum sciences and quantum information, and now even through the commercialization of quantum technologies. The end goal of this has really been identified as building and developing a large-scale quantum computer. We've heard a couple of different names for this economically viable quantum computer, but really what we're referring to is a quantum computer with millions of physical qubits, a technology that can solve the world's most challenging problems. This is the goal of many other people that you may have heard from already.
Xanadu is on this path. Our mission is to build fault-tolerant universal quantum computers. We are now a six-year-old company based in the heart of Toronto, with over 120 employees working on this mission. The majority of us are focused on building the fundamental photonic hardware to deliver this quantum computer, but we also work on the software stack, which is really important in making sure we get full adoption of this technology as it becomes viable.
To date, we have stood up online seven unique quantum computers across 15 different quantum processing unit generations. We've gone through 15 different manufacturing cycles with partners across the world. All of this is developed directly in our Toronto facility, which is the world's most advanced nano-photonics facility.
Approximately every six months, we are doubling the qubit count, increasing exponentially the computational power of a quantum computer, but it is important to note that these quantum computers are still far away from delivering on that true economic value. We believe the photonics platform has a unique opportunity here over some other approaches to be able to do this, but of course the jury is still out, and we do not believe this will be a winner-take-all scenario.
The reason that photonics represents such a unique opportunity for quantum technologies is that it's already a technology that is well understood in our telecommunications and data communications world. The chips that we develop are easily manufacturable at scale, which is one of the things you will need to develop a large-scale, fault-tolerant quantum computer.
They also operate at room temperature. Ninety per cent of our current system operates at 20°C, which means you're able to iterate and develop a lot faster and more cheaply. Not unique to us, but definitely with my colleagues at Nord Quantique, different architectures provide unique opportunities for some of the biggest challenges in correcting errors and ensuring that quantum computers are fault-tolerant.
With all of this put together, I will maybe highlight for the committee that there are many different approaches to building a quantum computer. Each comes with its own advantages and disadvantages. I'd also like to mention that we have one of the leading software platforms out there, in PennyLane. This is an open-source, general-purpose quantum computing tool that is competing right now on par with those from IBM, with Qiskit, and from Google, with SIRC.
Our approach is a bit different. We've taken a fully community open-source approach. Not only do we have corporate partners that are co-developing this tool with us; we also have academics across Canada and across the world. As of this year, it's also become fundamental coursework across a few universities. We're working with the Quantum Algorithms Institute in British Columbia to also ensure that they'll be able to provide further training and resources for the workforce as we continue to build it.
There's one final thing I'd like to point out about our core approach to building a quantum computer. As it is based on photonics, it also offers unique opportunities for quantum sensing and quantum communication. Today we have a test bed network that's been deployed for quantum communication and quantum key distribution here in our lab in Toronto. We've also been developing quantum sensing solutions for the National Research Council through the Innovative Solutions Canada project.
With that, I'd like to thank the committee one more time. I'd be pleased to answer any questions the committee may have.