Thank you, Mr. Chair.
My name is Shohini Ghose, and I have suffered my whole life from insatiable curiosity about how the universe works. In my office hangs a poster that says, “There is no cure for curiosity.” That curiosity inevitably led me to the strange quantum world, and now, as a professor of physics and computer science at Wilfrid Laurier University, I lead a diverse research team exploring quantum computing. I get to dream about teleportation—thank you, Professor Brassard, for inventing it—and about how it can be used in a future quantum Internet. Truly, I feel like “Alice in quantum wonderland”.
My team was the first to observe a connection between chaos theory and quantum entanglement. That's a phenomenon called the quantum butterfly effect. I also hold a TED senior fellowship, which has given me a global platform. If you have 10 minutes to spare, I invite you all to view my TED talk on quantum computing. It is the most-viewed TED talk on this topic.
I'm a good example of the Canadian connected quantum ecosystem in action. Although I'm not based at a major research university, I've worked with researchers in the quantum hubs in Calgary and Waterloo. I also have ongoing collaborations with colleagues at Ryerson and in industry.
My fellow researchers have already given you a sense of the huge potential for quantum technologies to impact multiple sectors. That brings with it opportunities as well as challenges for Canada. The most pressing by far, as you have heard, is the question of data security. I'm sure we'll talk about it more during the Q and A session. For now, I'd like to focus my remarks on three areas—education, collaboration and communication.
On the education side, even if every physics major in Canada were to choose a career in quantum computing, it would probably not meet the future workforce needs of the sector. Therefore, it is critical to develop talent from adjacent fields. You don't need a Ph.D. in physics to have a career in quantum tech. In fact, quantum computing sits at the intersection of physics, computer science, mathematics, chemistry, engineering and even biology. For example, for the past decade, I have been teaching a very successful undergraduate course on quantum computing for all science majors. It does not require any prior knowledge of quantum mechanics. Similar courses are now offered in other institutions.
A structured effort to build a unique broad-based curriculum that provides multiple pathways to quantum careers is needed. This could make the Canadian workforce agile and attract the best talent from elsewhere. This kind of effort would bring dividends regardless of the success or failure of a particular quantum technology.
Furthermore, there is a huge untapped pool of talent right here in Canada and around the world. Women, gender minorities and people of colour remain under-represented in science disciplines, particularly in physics, where one in five students is a woman. As of the last count, the number of black or indigenous women professors in physics in Canada was zero.
I hold one of five chairs in Canada for women in science and engineering, funded by NSERC, and the five chair-holders work together to increase the participation of women in STEM fields. I'm also the first Canadian representative to serve on the working group on women in physics of the International Union of Pure and Applied Physics, where the Waterloo charter on diversity and inclusion, which was launched here in Canada, was recently ratified. In 2019 I was the first person of colour to be president of the Canadian Association of Physicists, and I've been working to build a more diverse and inclusive physics community in Canada.
I really believe that the quantum revolution provides a unique opportunity for Canada to be a leader in building excellence through inclusion in this sector. We know how to build community in Canada, and we can show the world how to do it. This too would bring dividends regardless of the particular quantum technology being explored. Furthermore, ethics in AI has become an important and growing conversation, but quantum ethics is barely discussed. That seems to me a major gap that needs to be addressed.
The other thing I want to say is that it's a challenge to try to predict where a new technology will be used and what the applications will be. That's why a quantum ecosystem must include not just hardware and software engineers in quantum but also experts in health, finance, energy, and ethics to identify industry-specific needs and realistic quantum solutions. Interdisciplinary expertise and training will therefore be critical.
As a final point, I want to note that there is great public interest and enthusiasm for quantum computing, and a desire to know more. The Perimeter Institute in Waterloo, where I'm an affiliate, has offered many public lectures on the topic. They all sell out in minutes. My own online talks on quantum have received over five million views.
Now more than ever, it's clear that scientific literacy and public engagement play a key role in future societal progress. Canadian quantum scientists are already viewed as thought leaders, so they can play a major role in inspiring curious minds.
They say that curiosity killed the cat, but a quantum Schrodinger’s cat is never really dead.
Thank you.