Thank you for the question.
I'm not a materials expert, but I have a team that specializes in this area. Quantum computing will essentially accelerate the development of new materials. We mustn't lose sight of this. Twenty years ago, it could take 10 to 15 years to develop materials. I am exaggerating a bit, but you can see the extent of the problem. Quantum computing, and the quantum field in general, will accelerate the materials discovery process.
Similarly, we will be able to identify the physical or functional properties we want to discover for new materials. With quantum computing, we will be able to build on that to accelerate the development of new materials. I feel that's a major advantage.
I will come back to advanced equipment, because that's something very dear to us at PRIMA Québec. Advanced equipment is important. It's available in many university departments and colleges in Canada. However, not only do you need access to it, but you also need the staff with the skills to use it. This is true for what I would call classical materials, which are developed by way of existing measures and resources, but also for the quantum computing sector.
Does that answer your question?