Thank you for the question.
In fact, we recover certain percentages depending on the source of the materials. In the residential, commercial and institutional sectors, for example, we recover 35% of residual materials. In the case of cans, we recover 66% of these materials. In the shipping sector, the recovery percentage is between 80% and 90%, and in the construction sector, it's about the same. Of all these volumes, 50% of residual materials are not recovered.
The situation is like this because of technological problems. Very often, it is a question of material contamination. In fact, in the containers we recover, there may be two or three more materials than aluminum. Dividing these materials can then pose a technological problem when it comes to isolating the aluminum, which generates additional costs. As I said at the beginning, you end up with volumes that, because of the low critical mass in Canada, are not suitable for recovery.
So we are dealing with contamination and multiple materials. In the automotive industry, for example, there is a metal called zorba, which contains multiple materials. Once this metal is shredded, each of the materials must be isolated and recovered. Again, there is waste.
So it's both a technical problem and a critical mass problem. This means that research is needed to develop technologies that will optimize the recovery stage, and perhaps technologies that will allow small volumes to be processed economically. However, this is a very big challenge.