Thank you, Chairman, for giving us the opportunity to talk about natural gas, oil, energy efficiency, carbon capture and storage, and renewables.
First let me focus on the natural gas. Canada has been exporting natural gas to its southern neighbour for decades, and until the end of the last decade, nobody expected that trend to change. On the contrary, U.S. gas production was seen by many as stagnating and ultimately declining. Mexico was slowly turning into an LNG importer.
Then the shale gas output in the United States was multiplied by a factor of 10 between 2005 and 2011, and this changed everything. Canada’s gas exports to the United States declined abruptly, leading to a 30-bcm drop in production from 2005 to 2011, to 160 bcm. More important, since 2011 the United States has been pushing more gas towards its two neighbours because of the oversupply in its own market.
Mexico is importing less LNG and more Henry Hub indexed gas from the United States. The worst may still be coming as Marcellus, the prolific shale player in the northeast of the United States, is just at the beginning of its development.
But Canada has gas, conventional and unconventional. Tight gas has been produced for a long time, while shale gas is still in its infancy. The only problem is that this gas, once the transport costs to bring it to the United States are added, may no longer be competitive enough against U.S. natural gas production.
Additionally, there are concerns regarding the environmental impacts of developing shale gas, but shale gas can be produced in a way that respects the environment, as our recent report, “Golden Rules for a Golden Age of Gas”, demonstrated.
In order to stabilize gas production and revenues from gas exports, Canada should look at other markets. There is only one solution—LNG exports. Japanese, Korean, and Chinese companies have been acquiring assets on the west coast of Canada to bring the gas back home. Two of these projects have been given authorization to export.
These projects have one crucial advantage: they are better located than the U.S. projects, most of which are located in the Gulf of Mexico. Many U.S. LNG projects are based on existing LNG import facilities, so the investment costs will be lower. The U.S. greenfield projects, however, will not benefit from this advantage. Similarly, most new planned LNG projects in the world in Australia, Papua New Guinea, Africa, and Russia will be greenfield projects, and their development costs will depend on the specificities of the LNG projects.
Finally, there is the question of the price at which this gas will be exported, or rather of the indexation, oil or spot. The only LNG project recently sanctioned in North America, Sabine Pass, will be based on Henry Hub indexation, but it is sourcing its supply on the wider U.S. gas market, while the Canadian LNG projects will depend on the more dedicated—and still to be developed—sources of gas supply in western Canada.
International oil companies involved in these LNG export projects may prefer the traditional oil indexation, similar to what has taken place in Australia, but if Asian buyers are involved in the project, they may push towards spot indexation, either Henry Hub or its Canadian brother, AECO. Unlike in North America and Europe, there is no spot price in Asia. The IEA has been recently working on a report looking at how a spot market could be developed in Asia. This report will be issued in early 2013.
Second, there is oil. Canada is also an oil-rich country. Let us now have a look at the development of oil resources, notably oil sands.
In the medium term, the production of oil sands is expected to increase by 1.1 million barrels per day to 4.6 million barrels per day by 2017. Increasing volumes of Canadian bitumen production will still find their way to U.S. markets as heavy oil refining capacity is added, but Canadian producers will have to seek new markets and new transport solutions.
Looking forward, there are clearly political and local constraints to expanding, reversing, and/or building new pipelines. It is clear that Canada, along with the provinces, is looking for new options, but in the meantime output is rising quickly. Tight pipeline capacity is one of the major reasons that Canadian crudes are priced at a discount to WTI, but the spike in the discounts has hurt Canadian producers’ bottom line this year, and companies are now openly questioning to what extent they will remain a fixture in the market in 2013 and the medium term.
Canadian oil sands are set to play a key role in the medium term by raising the non-OPEC supplies by an additional 1.1 million barrels per day. That's the second-largest source of growth among the non-OPEC countries besides the United States, but Canada's projects will compete for financing, labour, and takeaway capacity with the rising output of tight light oil in the United States. As a result, these constraints and market dynamics are expected to delay around 200,000 to 300,000 barrels per day of Canadian oil sands output to beyond the 2017 timeframe.
Canada should be commended for its proactive approach to improving the social licence to produce from world-class oil sands resources. Now the challenge moves outside Alberta. The solutions of minimizing environmental and social impacts are based on technological and process innovation, and I want to recognize and commend the efforts industry is making in these areas, especially through such collaborative efforts as COSIA, but I urge industry to redouble those efforts and I remind you that the onus is on producers.
My point with regard to responsible unconventional oil and gas production is simple. This is not just good PR, it is good business. It is in all our interests that these industries remain healthy and welcome to operate.
Third, let me turn to energy efficiency. The release of the World Energy Outlook this month highlights the vast scale of what we call “the hidden fuel”, the energy efficiency. Despite the vast scale and high economic returns, it's not always easy to engage all the different consumers and decision-makers in the imperative to improve energy efficiency.
Canada has higher energy intensity, adjusted for PPP, than any IEA member country. This is largely due to its concentration of output in energy-intensive sectors: cold climate, large distances, and high standard of living. Final energy consumption has grown continuously over the past decade, though at a lower rate than the economy as a whole.
Canada's energy intensity, adjusted for PPP, has declined on average by 1.4% between 1990 and 2009 due mainly to the energy efficiency improvements, and this improvement in energy efficiency, led by the Office of Energy Efficiency at Natural Resources Canada, is the progress IEA is delighted to see.
Canada has strengthened energy efficiency policies across all sectors—industry, buildings, transport, and utilities—in the past two years. In July 2011 Canada’s energy ministers agreed to a collaborative approach to energy with a companion action plan. Specific areas covered by the plan include a more stringent model energy code for buildings, a next-generation energy rating system for homes, project financing tools, transportation, product regulation, and industrial energy management standards.
Fourth, let me turn to carbon capture and storage, CCS.
Canada has been actively supporting and developing carbon capture and storage technologies, both on a federal and a provincial level. The provinces of Alberta and Saskatchewan especially have been at the forefront of development. Saskatchewan is host to one of the best-known CCS projects in the world in Weyburn, successfully combining the long-term storage of CO2 and enhanced oil recovery with CO2. The main power utility in the province, SaskPower, also has a large power sector CCS project under construction. Furthermore, with significant financial support from the Province of Alberta, Shell has recently announced its investment decision on a new CCS project called Quest, linked with oil sands development at a large upgrader facility. Alberta has also put a lot of effort into developing a comprehensive legal framework to cover various aspects of storing CO2. The IEA welcomes Canada’s leading efforts in the field of CCS.
Fifth is renewable energy.
Renewable energy is playing a large and growing role in Canada's energy mix. Canada's power system already relies to a great extent on hydro power and accounted for almost 59% of total generation in 2011. This large hydro power potential should be further developed over the medium term. Known hydro power renewable developments are expected to take place mostly in solar PV and onshore winds, with Ontario and Quebec providing the largest growth. In 2011, cumulative installed capacity in Canada stood at 560 megawatts for solar PV and 5.3 gigawatts for onshore winds, mostly located in these two provinces. From 2011 to 2017, growth in these two technologies is expected at 3 gigawatts and 9 gigawatts respectively.
The IEA's 2009 in-depth review recommended that Canada develop a long-term policy that integrates renewable energy into the overall national energy strategy while taking into account the geographic, geological, and resource differences between the provinces and territories. It stressed the need to remove and overcome non-economic barriers as a first priority to improve policy and market functioning while having regard to Canada's unique national circumstances. The IDR called on Canada to commit to long-term, effective, and predictable support mechanisms in order to provide developers and investors with a stable regulatory framework. It also urged the government to develop more ambitious programs to facilitate the use of renewable electricity generation, microgeneration, and heating in geographically isolated regions in order to offer an alternative to the consumption of petroleum products. Many of these messages are still relevant today and for the outlook over the medium term.
Thank you very much.