First of all, thank you for the opportunity and the privilege to be here with you to present a few things about the academic and research community in the country.
I would like to emphasize that chemistry, by means of hydrometallurgical technology, is key to the processing and separation of rare earths. I'm sure many of you already know this, but I want to reiterate that hydrometallurgy involves water chemistry. Basically, we selectively dissolve metals—in this particular case, rare earth metals—that exist at a fraction of a per cent by weight in the raw material, in the ore. We try to do that as selectively as possible, put them into a water phase, and then continue with chemistry.
We reject the impurities on the wanted metals, and then separate this multitude of 18 elements from the aqueous phase into separate streams, into as pure a form as possible in order to produce pure rare earth compounds or pure rare earth metals. Chemical processing and treatment are both crucial to achieving these objectives.
Here in Canada we are fortunate to already have a critical mass among researchers and academics, throughout the country from coast to coast, in metallurgical technology. This has to do with Canada being traditionally, for a number of years, at the frontier of developing new technology for the metals industry.
The cost of doing research in Canada as compared with other countries, particularly the United States and the European Union, is much lower. I think this is an advantage for us, because it helps industry engage in university research at a lower cost than in other research-intensive countries, such as, again, the United States and the European Union.
Mineral processing and separation, extractive metallurgy, hydrometallurgy, chemical engineering, design—all of this expertise exists in Canadian universities. I have to make a comment here that in the last 15 years, because of the acquisition of several major Canadian producers by international companies, this activity has somewhat diminished. It's taking place mainly with only the few still remaining truly Canadian companies. Nevertheless, this critical mass exists, is there, and is ready to engage in collaborative research with industry.
The rare earth industry, because it's an industry in its infancy and is not a producing industry. Right now it does not have sufficient cash, like the big metal producers do, to directly support university research—i.e., as Barrick or Inco in the past, Vale, and Xstrata, previously Falconbridge, used to do. One of the reasons we are here today is to emphasize the need for Canada to develop some sort of national policy on the rare earth industry that would help academics not only attract new talent and students, because of the importance that will be evident out of this initiative, but also develop at the same time the resources to pursue focused research in Canadian universities.
It has happened in the United States. For example, President Obama declared, I think two years ago, that the development of the rare earth industry in the United States was a national priority. There is a precedent there. It would be nice if we could have something similar here in Canada.
We have a lot of models in Canada that already support university research. I'm sure you're aware of NSERC, the Natural Sciences and Engineering Research Council, which provides support. It has a number of university-industry collaborative grants. This can be a vehicle for supporting and funding university research in this area.
Provincial research programs, I refer to the Ontario Centres of Excellence in Ontario, this is something that I am most familiar with. Mitacs, another national organization based in Vancouver, British Columbia, is providing support to graduate students and post-doctoral fellows. Canada Foundation for Innovation, CFI, is providing infrastructure support.
So the universities are well adapted to engage in the short term and longer term, as Mr. Wilson explained, to solve problems that will enable the industry to jump-start and be closer and faster to production, and also engage in longer-term, more thorough, science-based, innovation-focused research to push the industry forward. There are a number of models, successful examples. I think it is straightforward if the resources are there for us to do it.
In closing, in our presentation you will find a collage of a various academic institutions from coast to coast. This is not an all-inclusive list. These are universities where activity is already taking place but is uncoordinated, I would say, at this point. CREEN is planning to organize a workshop here in Ottawa in about a month to bring academics from the industry and industry representatives together in the same room. I think this will be housed at CANMET here in Ottawa to discuss projects of common interest among the industry in order to improve efficiencies and push forward the research in Canada as efficiently as possible.
I would like to thank you for your attention and if you have any questions I would be happy to respond.