Good afternoon. My name is John Matthiesen. I'm the lead of Advisian's power and new energy team in the Americas.
Advisian is a strategy and technical advisory arm of the WorleyParsons Group, a company with more than 130 years of experience in the power sector. Advisian leverages the real-world practical experiences and technical depth of our consultants, who are focused on asset-intensive businesses such as the mining, hydrocarbons, chemicals, and infrastructure sectors.
The power and new energy team that I lead focuses on strategic and technical advisory services, early-phase project development, mergers and acquisition support through project due diligence and lenders' engineering, and owners' engineering services to clients, which include utilities, IPPs, various industry clients and institutions, financial institutions, and governments.
The new energy part of my team includes traditional renewable energy—such as onshore and offshore wind, solar power including photovoltaic and concentrated solar thermal power, hydroelectric, and geothermal power—all forms of energy storage, whether it's chemical, pumped hydro, compressed air, or thermal storage; microgrids; and distributed generation. We have dabbled in electric vehicles, as well as fuel cells and the integrated hydrogen infrastructure that comes with them.
I'd like to thank you for this opportunity to present some thoughts to the Standing Committee on Natural Resources. In the next few minutes I'll identify a few areas in which Advisian is seeing fantastic growth opportunities and other areas in which there are challenges to this growth. My comments really will focus on the 10 questions at the end of the email that was sent to me in advance.
We're seeing an energy transition taking place globally whereby roughly two-thirds of the current uses of oil and gas is changing to more sustainable, reliable, and economically better options, and threats to industries that source, extract, process, transport, and sell traditional fossil fuels are becoming more and more apparent.
Using rough figures, a third of the oil and gas is used for power generation. Today, solar and wind are cost-competitive with these technologies at the point of load. With the ever-reducing costs in concentrated solar, energy storage, hydrogen, and other technologies that allow intermittent renewable energy generation to provide reliable 24-hour power, the clock is ticking on the economic feasibility of continuing to build and operate traditional fossil fuel power pants. As an example, certain utilities in California have already made decisions such that it's unlikely another natural gas power plant will be constructed in that state.
Roughly another third of oil and gas is used for transportation. While it's a little further away, electric and fuel-cell powered ground transportation is nearing a tipping point in market acceptance and growth so that just about all manufacturers of automobiles are being forced to adopt and embrace. The governments of Norway and the Netherlands are moving forward with legislation to stop the sale or use of fossil-fuel powered cars by 2025. Larger countries, such as France, China, and India are looking at similar legislation.
About a year ago I made a personal announcement that I believe the last fossil-fuel powered car will roll of an assembly line in the western world by 2028, and since then Volvo has beaten my estimate by a staggering nine years by announcing that its last model year of cars with an ICE will be 2019.
The remaining third of oil and gas, roughly, is transformed into higher-value products, such as plastics in the chemicals industry. We feel that this industry will be thriving in the future as its primary feedstock drops in price.
Traditionally, WorleyParsons has been a hydrocarbons company. Roughly two-thirds of our revenue comes from clients who predominantly operate in this industry. We have recently noted shifts in some of our clients' behaviours such that they have begun to reposition their businesses to become early adopters in the energy transition. Some of these include Total buying an energy storage company, Saft, for over one billion euros; Shell developing a new energy business and repositioning itself as a transportation fuels company; and Dong divesting itself of oil and gas assets and renaming itself to remove oil and gas from its name. We're helping companies like these understand the challenges and guiding them through the energy transition.
Closer to home, Enbridge, Suncor, and TransCanada all have growing renewable energy businesses. Atco Power and Enbridge are dabbling with fuel cells and hydrogen, connected in minigrids at a residential level, as potential technologies of the future.
Speaking of hydrogen, we just completed a study for the South Australian government about how to create a hydrogen economy, and with it numerous clean energy jobs. The basis of the study was to ask what an abundance of clean power generated within the state of South Australia could be used for, other than paying the neighbours to take some of their excess generated power.
The result was that hydrogen could be generated through electrolysis with essentially free electricity and converted into ammonia. The ammonia would be exported to neighbouring countries such as Korea and Japan, where there is a demand for ammonia, both as a fertilizer and for conversion back to hydrogen to power their 26,000 public transit buses, which the government of Korea announced a requirement to convert to.
Canada may have several similar opportunities in provinces such as Quebec, Ontario, and B.C., where there are large amounts of clean power currently generated through hydro or nuclear. While the demand for new generation is slowing, if it could be created cost-effectively, a new industry could be created to counter the inevitable decline in oil and gas jobs on the horizon. Additionally, hydrogen could be used as seasonal storage in remote and northern communities that generate solar power in the summer and burn hydrogen in the winter.
Other trends we've been seeing are greater challenges to achieving a social licence to operate assets with carbon footprints or GHG emissions. Communities are having more say in which projects go ahead and want to know more about the local impacts of GHGs. The uncertain social acceptance of projects is also a huge barrier for financing projects.
Speaking of investors, we see a change in the types of questions that lenders are asking. For example, if a natural gas power plant is to be funded, lenders are asking whether the natural gas plant could be curtailed before the loan is paid back. Also, they ask, what the environmental challenges are in getting proper permits and approvals for this process for building new natural gas facilities. I do know that the Canadian Environmental Assessment Agency is in the process of making changes that will provide more certainty in this process, which is welcomed both by project developers and by their lenders.
There are some challenges we see, such as finding ways to properly educate the public on an apples-to-apples comparison of renewables when significant subsidies to oil and gas industries are provided in ways not easy to see, versus some past FIT contracts with renewables that make the complete costs very visible to the public. With the costs of solar and wind power reducing monthly, decisions based on six- or 12-month-old data are already out of date. These should also be compared with the soaring costs of nuclear refurbishments, which never seem to include insurance costs and, rarely, the long-term storage of their spent fuels.
This challenge can also be extended to remote and islanded communities, where there needs to be more effort and support to reduce their dependence on costly diesel. This would include communities and mines that are grid-connected but at the end of a long feeder line, and those that are completely islanded due to the uneconomical ability to connect them to the main grid via transmission.
Other challenges are around updating the curriculum in universities so that new graduates are aware of today's industry challenges and have innovative ideas on how to resolve them. Artificial intelligence, machine learning, new energy storage technologies, blockchain, augmented learning, power systems integration, virtual power plants, and cybersecurity should be the courses of today. These are the jobs that industry and in fact our company are looking to hire for.
While there is importance in the interconnected nature of long-distance transmission lines between provinces, states, and countries, the power industry is generally moving away from single-point generation sources supplying multiple cities long distances away. Instead, the future is a community-industrial-commercial scale microgrid, where local distributed multiple generation sources provide the needed heat and electricity for that community or industrial complex. Individual homes will purchase the power using blockchain-based transactions, bypassing traditional utilities. Instead, the role of utilities will be changing, and in fact is changing already.
Various state governments in the U.S., such as California, Connecticut, New York, Massachusetts, and Colorado, are rolling out grants and funding opportunities for the deployment of such microgrid systems. Canada could offer something similar to drive early-phase innovation and development of these technologies. In such a future state, cross-country transmission lines become less important. Fewer expensive long-distance systems are required. Instead, more locally distributed, smart, interconnected systems will be built.
I'd like to close by saying that the energy transition is already here. We are in its early days, but through technological advancements already taking place, the way we generate, transport, store, and use energy will look very different five and 10 years from now.
Decisions that spur innovation, attract the best talent and technology, and help Canadian companies be competitive on the world stage must be made in the immediate near-term future. If there's anything that I or Advisian can do to help the committee or the government further understand, study, benchmark, or conduct options analysis, we'd be pleased to help. That's exactly what we're doing for our clients, which include other governments around the world.
Thank you for your time.