Thank you very much for the opportunity to speak to you this evening.
I want to let you know that Canada is in a position to compete at the very forefront of the fields of particle physics and astrophysics internationally through the presence of SNOLAB, which is the lowest radioactivity laboratory in the world, two kilometres underground near Sudbury. SNOLAB experiments are addressing questions that are also the strong focus of the largest accelerator facilities in the world, including the Large Hadron Collider at CERN, Fermilab in Chicago and the J-PARC accelerator in Tokyo. In the future, the results of these experiments at SNOLAB can have as great a scientific impact as we had with the Sudbury Neutrino Observatory, for which a Nobel Prize was awarded in 2015.
These questions are absolutely fundamental to our very existence and to our knowledge the composition of our universe and the way in which it has evolved. They're the top of every list of scientific questions internationally.
First, what is the nature of the dark matter that holds our galaxy together and appears to have five times as much mass in the dark spaces between the stars as in the stars themselves—and us, of course—in ordinary matter? We have a very remarkable and complete picture of how the universe has evolved since the big bang, which was about 13.5 billion years ago. The gravitational effects of dark matter are essential for an understanding of that, which has now reached a complete nature, with the exception of, “What is the dark matter?” It's completely unlike any of the particles or any of the matter that we have identified on earth in any of our experiments to date.
The Large Hadron Collider is trying to produce them for the first time here on earth, hoping that they have as high energies as are necessary and as were available in the original big bang to do it. We know that those dark matter particles exist in our galaxy. We are moving through them. With our experiments at SNOLAB, we are creating an ultralow radioactivity environment to get rid of everything else, except perhaps signals from those dark matter particles hitting our various detectors.
We've made considerable progress on the development of detection techniques already at SNOLAB. There are major international collaborations, in some cases, with more than 400 scientists from 90 institutions and 14 countries that have designated SNOLAB as the location for larger-scale experiments such as ARGO. It'll push the sensitivity for dark matter detection by factors of hundreds of times greater than today's sensitivity, to the point—ironically, for me—where the only interfering background in the experiment will be neutrinos.
Such experiments will cost upward of $300 million, with substantial contribution, however, from international partners. A lot of those contributions are being spent here in Canada. At least one of these will be seeking funding within the next 10 years.
Secondly, from a physics question, it appears that the big bang produced equal numbers of particles and antiparticles, such as positrons, the antiparticle to electrons. Almost all of those antiparticles have decayed away, leaving us a universe dominated by the ordinary matter from which we and the stars are formed.
There's a theory as to the fact that that decay in the early universe was dominated by processes involving neutrinos. The experimental programs at Fermilab in Chicago and J-PARC in Tokyo are dominated by searches for properties of neutrinos that are needed in the theory in order to understand how the antimatter decayed in the early universe. These are multi-billion-dollar programs with strong, international participation.
A further part of this theory is explored by the ultralow radioactivity measurements at SNOLAB. Neutrinoless double-beta decay is the rare radioactivity we seek.
The two foremost international experiments of this type, each of them in excess of $300 million, have declared that SNOLAB is their location of choice for their site. We may also need an expansion of SNOLAB, which could cost in excess of $200 million in order to accommodate these future large experiments.
These are moonshots, building on Canadian leadership in one of the most fundamental and internationally visible areas of science, and we have the stepping stone to that through SNOLAB, although, granted, going two kilometres down doesn't exactly seem like a moonshot.
SNOLAB was created by a CFI program in 2003 that was designed to bring international scientists to Canada to work with Canadians—