Madam Chairman and members of the committee, thank you very much.
As mentioned, my name is Rudy Kellar. With me is my colleague Brian Guimond, who's Nav Canada's manager of military operations and unmanned aerial systems. Thank you for inviting Nav Canada to appear before the committee as part of your study into the regulations governing unmanned aerial vehicles. To us, this is an important issue, and we were pleased to see the committee decided to examine it.
For those who are not aware, Nav Canada is the private company that owns and has operated Canada's civil air navigation system for the past 20 years. We provide air traffic services, which include air traffic control, fight services, and other related services to pilots operating in Canadian airspace and international airspace delegated to Canada. We own the radars and other surveillance technologies that enable us to monitor the skies and the navigational aids used by all pilots flying in our airspace.
We are proud of our record in improving safety and efficiency in our skies and in reducing delays to passengers and aircraft operators. An act of Parliament gave us the right and responsibility to plan and manage airspace in Canada. Transport Canada retains authority to regulate us from a safety perspective, as they do with airlines and airports.
As the committee has heard over the past few weeks, the UAV industry is growing and there are applications for the technology that are quite exciting. However, it is essential that the growth occur in a way that does not undermine safety, for those currently using the skies, for those wishing to take to the skies with their UAVs, and for those on the ground.
Nav Canada has been an active participant in the Canadian aviation regulation advisory council, or CARAC, process that has been developing enhancements to the current Canadian regulatory framework governing UAV operations. We also sit on the International Civil Aviation Organization, or ICAO, remotely piloted aircraft systems panel, working on the development of international regulatory standards and recommended practices for states.
Airspace in Canada is divided into seven classes, class A through G, but can generally be thought of as separated into controlled airspace and uncontrolled airspace. On a day-by-day basis, commercial UAV operations in uncontrolled airspace are approved by Transport Canada or adhere to criteria for exemption from the approval requirement. UAV operations that have received Transport Canada approval through a special flight operating certificate, or SFOC, process to operate within controlled airspace include a requirement that their operations be coordinated with Nav Canada. They will contact one of our air traffic control facilities to work out the details of their operations so that we are aware of when and where they plan to operate. That coordination allows us to assess the risk from the proposed operation and impose restrictions as appropriate, such as limitations on altitude, hours of operation, communication, and determine the requirement, if any, for a notice to airmen to be published.
Normally, in controlled airspace, an air traffic controller's job is to use surveillance technology to know where all aircraft are and to provide control instructions for changes in altitude or heading by communicating with the pilot on the radio or through a data link connection. All control instructions are designed to keep aircraft in their airspace moving efficiently and safely separated.
There is some less busy airspace in which we provide traffic advisory services in Canada. Essentially that means ensuring pilots know where the other aircraft are in the area and what their intentions are. In this instance, it is the pilot's own responsibility to see and avoid the other aircraft once we have provided the flight information.
The integration of UAVs into the national airspace has provided unique challenges for air traffic management now and going forward. Controllers can't see the UAVs on our radar screens because the vast majority don't have transponders and are physically too small to be detected.
In those rare instances where a UAV is large enough or near enough to be detected by primary radar, the target on the radar screen looks the same as a bird would, and there is no communication available from the air traffic controller as they do not have the radio frequency, so they cannot be provided any instructions.
I think the committee has heard a lot in the past few weeks about how the technology is improving and what might be possible in the future, but today the lack of existing sense-and-avoid technology precludes complete integration of UAVs into controlled airspace, so a segregated integration concept is used to ensure flight safety.
The committee also heard about the potential of ADS-B technology to allow UAVs and pilots to see and avoid each other. Nav Canada is a world leader in the deployment of ADS-B technology. We were among the first air navigation systems in the world to use it when we deployed it around the coast of Hudson Bay in 2009 to fill a gap in radar coverage. We further deployed it up the northeast coast of Baffin. We are the majority partner in a joint venture to launch ADS-B sensors into 66 satellites, a constellation to provide the very first low-earth orbiting space-based surveillance of ADS-B. That is a global service that will provide surveillance worldwide.
It is important to recognize there are two very different types of ADS-B. There is ADS-B in and ADS-B out. With ADS-B out, the aircrafts broadcast information about their position twice every second. We have receivers in the Hudson Bay area, in the northeastern part of Canada, that capture that broadcast and provide our controllers with situational awareness, where the aircraft is at all times. ADS-B in, however, is the technology that allows the pilot in the cockpit or the UAV operator to see the other suitably equipped ADS-B aircraft around them on their own radar-like display, and in theory, take action accordingly.
While ADS-B usage has been growing, and there is a requirement that all aircraft in the United States be equipped by 2020, it is ADS-B out that they are equipping for, the broadcast capability only. No jurisdiction in the world is mandating that aircraft equip with ADS-B in, and the rates of equipage today are very low as the costs are very prohibitive for aircraft to equip.
It would, therefore, be incorrect to assume that ADS-B will, in any near term, provide the sense-and-avoid capability that will help to mitigate the risks beyond visual line of sight UAV operations. We favour further investigation regarding UAV ADS-B out equipage that would correlate with industry anti-collision equipment already installed on the majority of commercial aircraft in Canada. This is particularly important for internal airspace in and around airports.
When pilots see a UAV during flight today, they report it to Nav Canada's air traffic controllers and flight service specialists, and those reports are made available to Transport Canada through the Canadian aviation daily occurrence report, or CADORS. CADORS reports of UAV encounters were 182 last year, up from 72 the previous year, and are anticipated to continue to climb, with the majority occurring around the urban centres of Vancouver, Toronto, and Montreal.
Nav Canada is a member of the CARAC, as mentioned earlier, and a member of the CARAC UAV systems program design working group. In August we submitted comments to Transport Canada on the proposed regulatory amendments designed to govern visual line of sight operations for UAVs under 25 kilograms. We have advocated for more rigorous requirements on such items as registration, operator education, training requirements and licensing, minimum age requirements, and most importantly, minimum distances to aerodromes.
In the longer term we think there is a need to examine the potential role of ADS-B technology and to consider ADS-B equipage requirements in certain airspaces in Canada for both piloted and non-piloted aircraft. Government should also be working with UAV manufacturers to implement geofencing to keep amateur UAVs away from controlled airspace and below certain altitudes.
In the meantime we believe there is a critical need now to improve enforcement capabilities and clarify legislation enabling law enforcement agencies to assist in real-time enforcement of UAV-related violations to the Aeronautics Act. Today, we understand, only the RCMP has the delegated authorities to enforce the Aeronautics Act. Local, provincial, and municipal police have no authority to enforce such violations, yet are being asked to address the issue.
Thank you. I'd be pleased to take questions when required.