I may steal a little extra time, because I'm talking about the Weyburn project, and it's the biggest CO2 storage project in the world.
Good morning, mesdames and messieurs, ladies and gentlemen. My name is Dave Hassan. I'm team lead of the Boyer-Provost property team at EnCana. Prior to this I spent five years in EnCana's Weyburn business unit, initially as group lead of development and finally as acting vice-president. I'm here today to present Weyburn as a case of a win-win scenario for enhanced oil recovery in the environment. I must remind the committee that I'll be talking about some forward-looking information today.
EnCana was formed in April 2002 by the merger of two major Canadian oil companies, PanCanadian Energy Corporation and Alberta Energy Company. We're headquartered in Calgary, and we are North America's second-largest natural gas producer and a leading oil sands integrated producer. We have strong corporate governance, including a constitution, which guides our organizational behaviour. Our people live and work in the communities where we operate, and we do our best to be a good neighbour.
We're also committed to making efficient use of resources, minimizing our environmental footprint and our emissions intensity, and increasing the energy efficiency of our operations.
EnCana believes that geological storage of CO2 is one of the most pragmatic and technically viable near-term options to reduce greenhouse gas emissions. There are three types of carbon capture and storage. Natural carbon sinks are an integral feature of the natural carbon balance of the biosphere, and these can be augmented by human action, such as forestation projects and growing energy crops.
Enhanced product recovery includes oil recovery technology, which is well-established, gas recovery, and coal-bed methane recovery. Stand-alone waste storage is similar to enhanced product recovery, except there's no revenue stream to offset the cost of capturing, transporting, and storing the CO2.
Carbon capture and storage presents an opportunity for society to use some of our heavier hydrocarbon resources, abundant supplies of coal, for example, in a less carbon-intensive fashion by stripping carbon from the fuel and geologically storing it. This is exactly what we do at Weyburn.
CO2 for our enhanced oil recovery operations comes from a coal gasification facility located in Beulah, North Dakota, operated by Dakota Gasification Company. It is transported through a 325-kilometre pipeline to southeast Saskatchewan in the Weyburn field. Dakota Gas strips carbon from coal to convert it to synthetic natural gas. When burned, natural gas releases a little over half of the CO2 per unit of energy production as coal does. By stripping carbon, DGC makes coal a less CO2-intensive energy form.
Weyburn closes the loop on this carbon-stripping process by taking over 6,500 tonnes per day of waste CO2 that was being vented into the atmosphere and injecting it almost a mile underground. This makes it Weyburn Canada's largest CO2 enhanced oil recovery project and the world's largest geological CO2 storage project. Every day that Weyburn injects CO2, it's like taking 1,400 small to mid-sized cars off the road for a year.
The first one in this process is enhanced oil recovery. Enhanced oil recovery by CO2 miscible flooding has been used in the U.S. for over 30 years, so it's not new technology. CO2 is injected with alternating slugs of non-potable saline water. The CO2 essentially acts as a solvent; it makes the oil swell, makes it less viscous and lets it flow more easily out of the nooks and crannies or pores in the rock space.
The CO2 and water produced with the oil are recycled in a closed-loop system. CO2 EOR makes heavy use of geologists, geophysicists, and reservoir engineers to understand and optimize enhanced oil recovery. There are also a host of other experts, ranging from operators in the field through our facility and construction specialists, to environment, health, and safety folks to ensure that our operations run smoothly, safely, and responsibly.
The payoff for this effort is demonstrated by the success of the Weyburn project. Weyburn oil field was discovered in 1954. Following primary production, a water flood was initiated in 1964 and production peaked at around 50,000 barrels a day. Then the field began a natural decline. There were a few drilling projects in the mid-eighties and mid-nineties that somewhat offset that, but then the CO2 miscible flood began in the year 2000, reversed that continued decline, and boosted oil production to levels not seen since the early seventies. In fact, it's exceeding our forecasts right now.
Current production of about 30,000 barrels of oil per day is almost three times what EnCana predicts the field would have produced without CO2 flooding. We project about 155 million barrels of incremental oil recovery from CO2 miscible flooding, which will bring total oil recovery to over 40%, about 10% higher than we expect from water flooding.
The second big one in this is CO2 storage. Really what we do at Weyburn is effectively to take those big stacks in North Dakota that were emitting CO2, we turn them upside down, and we inject that CO2 almost a mile underground, where it enhances oil production and will be stored for thousands or even millions of years.
From 2000 through 2004, a $40 million research effort ran parallel to our enhanced oil recovery project in order to predict and verify the ability of the oil reservoir to securely store CO2. And I see a few people around here who have been involved with that project.
Phase one of the IEA Weyburn project was the largest full-scale, in-the-field scientific study every conducted involving CO2 storage. It was funded by the Canadian and U.S. governments, Alberta and Saskatchewan, the European Union, and several industry partners. During the study, 24 different research organizations completed extensive monitoring and computer simulation studies. In essence, they conducted a four-year external audit of the suitability of the Weyburn site for CO2 storage. Phase one concluded that long-term storage of CO2 at Weyburn is viable and safe. A copy of the phase one report can be downloaded from the Petroleum Technology Research Centre website.
EnCana was a significant contributor, providing the test site funding and thousands of hours of work by EnCana employees at a rough in-kind cost of $15 million. We also opened our doors to over 200 field tours to tell the world the story of enhanced oil recovery and CO2 storage.
Based on EnCana forecasts during phase one, the researchers concluded that about 23 million tonnes of CO2 could be stored during enhanced oil operations and almost 55 million tonnes if injection continued post-EOR, given some other economic driver.
EnCana currently estimates that our most likely storage case during EOR is roughly 30 million tonnes. That's one tonne for every citizen of Canada, or equivalent to taking all of Montreal's vehicles off the road for two years.
EnCana is currently working with the research community to extend the project, with the primary goal of developing a protocol or cookbook that would provide practical guidance to others wanting to do CO2 storage projects.
Unfortunately, you can't just pull CO2 off the flue stack of power plants. Air is almost 80% by volume nitrogen. When we burn fuel with air, the resulting flue gas is only 10% to 15% CO2. To be useful for enhanced oil recovery, CO2 must be 95%-plus pure, thus the challenge and cost of CO2 capture, which I'll talk about in a minute.
Once we have pure CO2, we need to compress it to push it down a pipeline to the oil field or storage reservoir. The size of the oil pool is also a consideration in the economics of enhanced oil recovery. It's no coincidence that Weyburn is the third largest conventional oil pool in western Canada. Not every large oil pool is suitable for CO2 flooding. That's where geologist reservoir engineers have to assess the properties of the field.
Capital investments for these projects are huge. EnCana estimates that over $1.3 billion will be invested for the CO2 flood at Weyburn over the life....
Adding to the mix of reservoir suitability and development costs are the often-volatile price of oil and the market price of CO2.
IEA reported in 2003 that the single biggest cost for CO2 is capture, at about $25 to $50 per tonne. That's the process of creating a pure, concentrated CO2 stream, as opposed to the dilute flue gas I referred to earlier. Transport will add $1 to $5 per tonne per 100 kilometres, and injection adds about $1 to $2 per tonne.
EnCana was fortunate with our CO2 supply from North Dakota, since Dakota Gas was already producing a pure CO2 stream as a result of the coal conversion process. However, additional CO2 capture from traditional flue gas sources will face high costs with current technology.
In summary, EnCana and the Dakota Gasification Company captured a CO2 waste stream that was being vented to the atmosphere and used it to bring new life to a mature oil field. EnCana hosted a world-class research project that provided an independent audit of the storage capability of the Weyburn reservoir and concluded that it could safely and reliably store CO2. We continue to work with the research community on the final phase to study and further refine the previous work and to prepare storage protocols and guidelines.
The cost of CO2 capture is likely to be the single biggest impediment to widespread EOR or stand-alone geological storage applications. Weyburn is a commercial and environmental win-win that provides a leading example of a possible sustainable energy future for fossil fuels that allows energy to be extracted while minimizing CO2 emissions.
Thank you for your attention, and I will be pleased to answer questions.