Thank you, Mr. Chair, and thank you for inviting me to speak to the committee this morning.
As well as being an associate professor at the University of Ottawa, I am also the director of SUNLAB.
I appear in my personal capacity, representing only my own views.
In my career I've been involved in all three spheres that generate most intellectual property and technology creation. I performed research at the National Research Council of Canada for five years, until 2001. I then worked in the private sector from 2001 to 2006 for large Canadian, and then American, multinationals. And in the past 10 years I have been in academia. Most of my research activities have been focused on the information and communication technologies sphere and clean technologies.
At the University of Ottawa, I direct more than 15 researchers dedicated to developing new systems and services to further our transition to clean energy generation and bring the unification of power and data networks. Our research group has interacted with more than 30 companies, as well as 20 academic and government laboratories, and has spun off three companies.
In Canada, my experience is that when graduate students start with you, you can have confidence that they will become experts in their technical field after five years, as we have universities of international stature, with world-class researchers. They will most likely create valuable intellectual property during their studies. The largest intellectual property and technology transfers from academia to Canadian companies occur when one of these innovative companies hires these technically well-trained graduating students.
Students have access to a number of resources within their universities to learn about intellectual property creation and management, and to be linked to ecosystems in their sector of study. This must usually be initiated by the students, and is usually not required to obtain their degree. Therefore, they often have low incentives to avail themselves of these extremely useful tools. Motivated students must receive adequate compensation while they are performing their research and pursuing knowledge transfer activities. This is mainly provided in Canada by the tri-agency research councils, which are NSERC, CIHR, and SSHRC. Students must have access to world-class equipment, as provided by the Canadian Foundation for Innovation, and prototyping such as provided by our fourth pillar, CMC Microsystems, in Canada.
Canada does this fairly well, although research stipends are lower than those provided by innovative countries such as Germany and Japan. Countries that experience higher rates of technology know-how transfer between academia, government labs, and industry support projects that must include the three pillars of innovation, which are academia, government labs, and industry.
To increase the rate of creation of innovative new companies and to have existing ones grow, new graduates and other members of academia must be networked into the broader innovation ecosystem. In order to do so, research groups must be well funded to attend regional, national, and international events that link collaborators, possible customers, and suppliers, and not just other academics. They must be linked with standards groups, as well as industry and professional associations.
They must be able to get funding from various sources to do design work, proof of concept, client networking, and prototyping. Often these steps can take years, especially when hardware is involved. Therefore funding and support for these ideas must be maintained over this time. This has been a constant in Europe, Japan, and the United States. Student researchers must be incorporated in large-scale research projects in order to dream big and be brought to the next level. In the United States, star students are often involved in Department of Defense or Department of Energy large-scale projects that include the three pillars. This is also observed in European framework projects, and now more and more in China as well.
Within these projects and at their university, they must learn to be comfortable discussing topics of mutual interest with their fellow researchers, evidently, but also with lawyers and business persons in their field. This cost is usually assumed internally by universities and, therefore, may not be optimal to assist a bright mind with a commercialization effort. These bright minds have access to early funding from the industrial research assistance program, IRAP, of the National Research Council. These early-stage companies often must show early local customers, and this is where the Canadian government can help, while they pursue their international customers, to be able to show early success as well as to bankroll their initial efforts.
One funding in clean tech that has worked well over the years is Sustainable Development Technology Canada, SDTC, which provides one-third of all the funds for prototypes, although this comes short of the U.S. projects funded by the small business innovation research, SBIR, and small business technology transfer, STTR, programs that fund early-stage, high-risk technologies for small companies. SBIRs carry the burden of most of the costs of early-stage projects, allowing more technological risk on the company's part.
According to the Naylor report, the amount per capita spent on research and development in Canada has been steadily decreasing for the last 20 years. At the same time, we are a society that is more and more dependent on the advanced economy, and other countries have stepped up to the plate and significantly increased their amount per capita.
In conclusion, Canada has all the basic elements to increase its generation of intellectual property and to transfer it to industry and other intersted organizations. We only have to bring them together, recognizing that resources must be allocated for the purpose.
Thank you for your attention.