Thank you, Mr. Chair.
Good morning. Thank you for inviting Photonic Inc. to contribute.
I am Stephanie Simmons, the founder and chief quantum officer at Photonic. I've been part of computer science and mathematics departments at IQC at Waterloo, material sciences at Oxford, and the School of Electrical Engineering at UNSW. I am here as an associate professor of physics at Simon Fraser University. I am also a CIFAR fellow, a Canada research chair and an hounouree of Canada's Top 40 Under 40.
To my knowledge, I am the only Canadian to have won Physics World's “top 10 breakthroughs of the year” twice, in 2013 and 2015, both of them for my quantum computing breakthroughs, which were covered by The New York Times, Wired, the BBC, the CBC and others.
Photonic Inc. is a majority-owned Canadian company, founded in 2016 for IP, and has been in operation since 2021. We have attracted significant world-class talent and now have over 60 full-time employees based here in Metro Vancouver, in four provinces nationally and in multiple countries.
We are in stealth mode. We are not disclosing our funding, our road map or our pace of progress, but what we can say is that our core technology is on the spin-photon interfaces that enable true modularity of quantum processors and quantum networks, as well as silicon-grade scaling.
The previous quantum sessions at this committee have been fascinating. I agree with much of what has been said, but I hold alternative opinions on many key issues.
I agree with the previous panels of experts that predicting the scope of impact for quantum technologies today is very much like predicting the scope of the two previous times that we commercialized a branch of physics, one with the semiconductor transistor in 1945, and the other with nuclear fission in 1939.
Although the specifics are difficult to predict, I would say that transformative technologies follow quite regular patterns in their adoption. After incubation within academia for decades, there is a shift, a mass proliferation of entrepreneurial activity around many distinct approaches, and then finally, a dominant design emerges. This is a key moment, after which there is a substantial talent shortage and a mass consolidation into a handful of winners. We believe that the quantum dominant design is not yet here, but it will become apparent in the next few years.
I agree with the previous panels of experts that Canada's goal should be to be the home of one of those winners, and that picking winners before a dominant design emerges does entail some risk, but the risk of wait-and-see is much greater. Through the public lens, however, quantum technologies will initially be seen as a sincere cybersecurity challenge. Essentially, unless we defend our cybersecurity infrastructure properly now, the advent of a quantum computer could be positioned as the information-security equivalent of the nuclear bomb.
Quantum computers will break the asymmetric, or RSA, layer of modern encryption. RSA is used everywhere—in all civilian passwords, online communications, the SWIFT payment system, critical infrastructure logins, government and military communications and files and old legacy code that is no longer supported. It all needs to be replaced.
The concern is very asymmetric. Everything needs defending, whereas only one RSA-capable quantum computer needs to be built by an adversary to have god-like access to all modern and stored communications.
Researchers have been working for decades on a potential solution to this issue, to build trust in an alternative, post-quantum algorithm. I strongly support intense development in this area, in all forms, because the cost of failure here is so high. No one knows if these post-quantum codes will hold up against future quantum attack or even a classical computing attack. I sincerely hope they do, but there is optimism and no hard proof. Three of the top candidate post-quantum algorithms have fallen, one at a time, over the past years, including one just a few weeks ago.
We can hope for the best, but we should plan for alternatives. Canada should adopt many layers of protection here. In addition to RSA, we can layer on all post-quantum encryption contenders that are standardized in software so that adversarial organizations must break all of them to get through. This will buy us time. For critical infrastructure, I suggest we additionally layer in provably secure defences during this encryption transition, for insurance purposes. There are two provably secure replacements for RSA—one-time pads, and quantum key distribution or QKD. The physical distribution of one-time pads can be initiated immediately at scale. The second, QKD, requires the targeted development of quantum repeaters, and in the Canadian setting, this means quantum satellites.
Fortunately, this quantum infrastructure is exactly what will be needed for the upcoming quantum internet over which we can deploy blind quantum computing, which was alluded to earlier this morning and offers unique applications of its own. Canada has a big choice to make here, and urgently. We need to replace all of RSA, and decide how much additional insurance we need around critical infrastructure. That choice is substantial because its outcome also determines if we lead the world in building, deploying and exporting technology to enable the global quantum internet.
I disagree with the previous committee members about a few key items. The first is time scales. The history of nuclear fission may be illustrative here. In 1933, the world's leading nuclear physicist, Rutherford, ridiculed the idea of ever getting energy from nuclear transmutations. That was the predominant scientific view at the time; if it weren't impossible, it was at least 20 to 30 years away. However, it was a mere seven years between the demonstration of nuclear fission a few years later in 1938 and the first nuclear bomb explosion. This is the power of a dominant design and a Manhattan-like mobilization to organize and bring it into reality. We at Photonic believe that quantum technologies are much closer than they currently appear.
The economic benefits will not be evenly distributed. We are the country of the Avro Arrow, the CANDU reactor, Nortel, BlackBerry and Bombardier. We are the home of the first transistor patent, filed first in Canada 20 years before the first Bell Labs demonstration, and where is that?
Many quantum technologies were invented here in Canada, and these are cautionary tales. We have an opportunity to break through this pattern of inventing but not reaping the rewards.
I have six specific recommendations. However, I believe my time is up, and I am happy to yield the floor. If you would like it, I could take two minutes to summarize these six recommendations.