Thank you, and good afternoon, everyone.
My name is Peter Howard, and I am the president and CEO of the Canadian Energy Research Institute.
Founded in 1975, the Canadian Energy Research Institute, commonly referred to as CERI, is an independent, not-for-profit research institute specializing in the analysis of energy economics and related environmental issues in the energy production, transportation, and consumption sectors. Our mission is to provide relevant, independent, and objective economic research.
CERI is a fully funded institute, with funding coming from the Government of Canada, the Government of the Province of Alberta, the Canadian Association of Petroleum Producers, and the Small Explorers and Producers Association of Canada. In addition, in-kind funding by the Energy Resources Conservation Board of Alberta and by the University of Calgary is well accepted.
Concerning the gas industry in Canada, my comments today will be focused on the gas industry in western Canada and on how innovation has contributed to the competitiveness of that industry.
The natural gas industry in western Canada is currently under pressure due to low commodity prices, resulting in economic challenges for many exploration and development companies. Low commodity prices are a direct result of an oversupply situation in the market, coupled with a flat- to low-growth demand profile for natural gas within the North American market.
Surprisingly, this oversupply situation is a direct result of an innovative process developed by the oil and gas industry. I am referring to the advent of the horizontal drilling and hydraulic fracturing process. Low commodity prices are not new to the industry, but current research suggests that today's prices are here to stay for the medium to long term. This fact, when coupled with higher operating costs, weather issues, remote locations, and higher pipeline transportation costs, results in a situation in which the economics of gas development are severely challenged.
Research carried out by CERI is or will be available on CERI's website as a result of our mandate and is available to government, industry, and the general public at large. Specifically, the following reports will offer a background for my comments today. The North American natural gas demand pathways study is one we have been involved in for the last eight months; it is due to be released in March of this year. Global LNG: Now, Never , or Later is a report that we just published in January of this year. Thirdly, Improved Productivity in the Development of Unconventional Gas is a report that we published in May 2012 as a joint report with CSUR, the Canadian Society of Unconventional Resources, and PSAC, the Petroleum Service Alliance of Canada.
The development and widespread application of horizontal drilling coupled with multi-stage hydraulic fracturing has revolutionized the industry. Utilizing these innovative technologies has allowed development of hydrocarbon-bearing formations that in the past has not been deemed to be economic. The rapid development of shale and tight gas resources in the United States and Canada has created an environment in which natural gas supplies are projected to last many hundreds of years.
Unfortunately, this rapid development within the United States has added close to 15 billion cubic feet per day since 2005, creating an oversupply position. Of more concern, it is starting to back Canadian gas out of historic markets within the U.S. mid-continent, the U.S. east coast, and Ontario and Quebec.
CERI's report on natural gas pathways starts with the assumption of a continuing robust supply within the United States and explores four plausible narratives for future gas demand within North America. This report suggests that the term “robust supply” can be loosely translated into a supply swing of plus 45 billion cubic feet a day by the year 2030.
Two issues that are identified as potentially having the largest effect on gas demand are LNG exports, whether off British Columbia or from the Gulf Mexico, and the transition of coal-fired power generation to natural gas-fired power generation.
The future viability of the western Canadian gas industry is dependent on access to markets, whether North American or outside North America’s shores, coupled with a resource that can be developed and be price-competitive.
The four narratives that were examined in this particular study indicated that the Henry Hub price will, on a low case, remain within the $2.50 to $3.50 per mcf for the next 15 years, and on a high case climb back to the $6 level by 2020 and the $7.50 level by 2030. The low case is the most concerning because it suggests that AECO C pricing, which is the benchmark price for western Canada development, will stay at or below the $3 per mcf for the foreseeable future.
The four narratives also indicated that the level of net gas exports to the United States will decline from the current level of 4.5 billion cubic feet per day to a sustained level of 3 billion cubic feet per day in the high case, to a negative position in the low case. In other words, following the low case of our four scenarios, Canada could become a net gas importer of natural gas within the coming years if the low case becomes reality.
In drilling terms, this could be considered weak, if not devastating, as activity will remain below 1,000 wells per year for several years to come. Even though a current horizontal well with 6 to 12 frack storages effectively replaces 6 to 8 vertical wells, the activity is still small when compared to the 18,200 wells that were drilled in 2006.
CERI's LNG report concluded that the proposed British Columbia LNG terminals are faced with increasing competition for access to the Asian Pacific markets, coupled with the potential of a changing price regime. Australia has seven liquefaction projects under construction, while the United States has thirteen liquefaction projects in various phases of development. This, coupled with East Africa developments and the B.C. projects, results in 25 billion cubic feet per day of new LNG supply potential all vying for the island economies of Japan and Korea and the mainland economies of China and India within the 2015 to 2020 timeframe.
Japan, from a security of supply position, will purchase LNG based on an oil-linked contract, whereas Korea is looking to buy LNG at the point of liquefaction, as in the recently announced Sabine Pass contract. China, on the other hand, is using its size to negotiate down LNG prices, still oil linked, but potentially to the point of delinking from oil will be a reality. The development of an LNG trading hub is a potential for the Asian Pacific market.
With respect to western Canadian gas producers, the above suggests that the LNG game has significant risks, and as in the case of a low-priced North American market, being a low-cost producer is paramount.
Prior to the advent of the horizontal well, gas producers drilled one well per section of land and per geological formation. In rare cases, multiple production strings were used to access multiple segregated geological structures, all within one casing. In addition, some geological structures were allowed to be commingled in a single casing but under strict guidelines from the regulator. The development of the horizontal well, against constant pressure to reduce costs, resulted in the innovative approach of multi-well pads.
The practice of grouping wells tightly on a single land location has been driven by environmental, economic, and practical logistics around materials and land footprints, but in the end it is all about reducing costs so that the unit cost of production can compete in the marketplace, which currently is approximately $3 per mcf.
The practice of placing multiple wells on one pad results in the following benefits: it reduces the impact on developable land; it reduces the need and extent of access roads and gathering pipelines; and it allows for continuous drilling over a longer period of time, including winter and summer conditions. A single rig could drill up to 30 wells without the cost of mobilizing and demobilizing that rig. It allows for continuous fracking operations without the need to reposition the pumps, trucks, and pipes; it allows for central storage of materials, including drilling pipe, fracking fluids, sand and water; it allows for improved supply chain management by having full loads of materials travelling from the warehouse to a single location; and finally, it reduces travel time for crews and supervisors to one site as opposed to multiple sites.
In very simple terms, by applying the economies of scale—multi-well paths—across the elements that contribute to the total drilling costs, the per-well costs drop by more than 25%. In concert with multiple well-drilling operations, the cost advantage of moving from a three-stage frack process up towards a 12-stage frack process decreases the supply cost to a range of $3 to $4 per mcf, depending on the responsiveness of the resource location.
In 2011, in the province of Alberta 2,059 gas-directed well licences were issued; 92% of all the licences that were classified as horizontal licences were located within the west-central part of Alberta. Within this area, 25 companies licensed 20 wells or more, and it is strange to note that only 24% of the horizontal well licences involved two or more wells. In fact, there was only one location—and I have to give credit to Encana—with 12 wells on that site, one location with six wells, and 25 locations with four or five wells. Please note that I'm talking about Alberta here. British Columbia is slightly different.
While the industry embraces the application of multi-well pads in pursuit of unconventional resources, the development appears to remain focused on one to two wells per section. Possible reasons for this include budget constraints for some exploration and development companies, a condition that will worsen as gas prices remain low; single wells being drilled to continue the land tenure while waiting for a price improvement to fully exploit the reservoir; and some unconventional resources still being considered exploratory resources, for which the potential and the risk have not yet been evaluated. Low market prices weigh heavily on that type of decision.
Having fragmented land holdings reduces the desire for multi-well pads. Large development companies will only use multi-well pads if they have land control in offsetting sections. In Alberta, the nature of the beast is that we have a fragmented land system.
Western Canada will continue to face challenges relating to competing for space in North America or the Asian market, and in order for the industry to achieve success in this game, continued improvements in productivity through innovation are an absolute requirement.
Thank you for your time and attention.