Evidence of meeting #18 for Fisheries and Oceans in the 41st Parliament, 1st Session. (The original version is on Parliament’s site, as are the minutes.) The winning word was farms.

A recording is available from Parliament.

On the agenda

MPs speaking

Also speaking

Inka Milewski  Science Advisor, Conservation Council of New Brunswick Inc.
Matthew Abbott  Fundy Baykeeper, Conservation Council of New Brunswick Inc.
Clerk of the Committee  Mr. Georges Etoka

3:35 p.m.

Conservative

The Chair Conservative Rodney Weston

I call this meeting to order.

I'd like to take a moment to thank our guests for joining us here this afternoon. We really do appreciate you taking time from your busy schedules to appear before the committee and answer some of the questions the committee members have.

I'm not sure how much the clerk has briefed you on the proceedings of the committee, but there are certain time constraints that we try to conform to. Committee members have allotted previously agreed to times in the interest of ensuring that all committee members get to ask questions and have the answers provided to them as well. If you see me interrupting, please don't take offence. It's just in the interest of fairness, and I certainly hope that you will not take offence to that at all.

At this time, I'd like to invite Ms. Milewski to make opening comments, and I believe, Mr. Abbott, you're going to make some comments following Ms. Milewski as well.

Thank you. Please proceed.

3:35 p.m.

Inka Milewski Science Advisor, Conservation Council of New Brunswick Inc.

Thank you, Mr. Chairman. I'd like to thank the committee for inviting me here today to give this presentation.

My name is Inka Milewski. I'm a marine biologist, and I'm the science advisor for the Conservation Council of New Brunswick. I've been working in the field doing research for the last 34 years.

The Conservation Council of New Brunswick is one of the oldest environmental citizen-based conservation organizations in Canada. It was founded in 1969 with a mandate to promote policies that would respect the environment and ensure sustainable use of its resources. We act on this mandate through public education, research, policy development, and special programming.

I'm here today to make the environmental and regulatory case for transitioning the open-net pen fish farming industry to closed containment aquaculture. Closed containment aquaculture will address the most serious environmental issues associated with this industry: the loss of habitat and the displacement of traditional fisheries. These are issues that have not been addressed and that cannot be fixed by the current management and regulatory regime. Moving open-net pen salmon farms onto land will also relieve DFO of its conflicting regulatory responsibilities—on the one hand its mandate to protect coastal habitat and wild fish, and on the other hand its mandate to promote and regulate an industry that is known to impact the very habitat and fish it is required to protect.

By volume, fish feces and uneaten feed are the major wastes released from open-net pen farms. This waste is largely invisible to you and me, to the public, and to regulators. DFO has acknowledged that open-net pen farms discharge organic waste, and this waste can have both a small and a large ecological footprint.

In 2005 DFO scientists reported that on a daily basis, salmon farms in one particular bay in southwest New Brunswick released three times more waste—organic waste—than did the sewage plant and the pulp mill that operate in the same bay. The author of that study, the DFO scientist, concluded, and I'm quoting:

...substantial changes to the functioning of the ecosystem have occurred due to the presence of the salmon farms.

According to DFO's website, and I'm quoting again:

Aquaculture operators must meet rigorous federal and provincial environmental standards.

Once an aquaculture facility is up and running, it is regularly monitored for compliance and must strictly adhere to provincial and federal statutes and regulations.

Federal and provincial regulators have agreed that there is only one measure of environmental quality that will be monitored, and that's sulphide levels in the sediments under the farms. DFO has not defined the sulphide limit that results in mandatory regulatory action. An authorization under subsection 35(1) of the federal Fisheries Act, which is this HADD authorization, may be required when sulphide levels exceed 4,500 micromolars.

Options for avoiding this authorization include moving the fish from the farms to another location, reducing the number of fish, or fallowing the site, meaning removing the fish for a period of time and then bringing the fish back in. DFO has determined that sulphide levels over 3,000 result in a 70% to 90% loss of the biological diversity around those farms. At levels over 6,000, ninety percent of the biodiversity is lost.

Annual monitoring in New Brunswick shows that 20% of salmon farms exceed the 1,500 level. This is the level where 40% to 60% of the biodiversity is lost.

For example, here are some monitoring results from a fish farm in Passamaquoddy Bay in southwestern New Brunswick. You'll note that in 2007, the sulphide levels exceeded 9,000. Fish were removed from the site for a couple of years, but once the site went back into production, the sulphide levels shot back to over 7,000. No sanctions were issued against this farm. This farm still operates.

DFO provincial managers and the aquaculture industry believe that simply fallowing—meaning removing the fish for a while—for as little as two months to two years will allow the sediments to recover. Indeed, as you can see, the sulfide levels do drop, but DFO has yet to prove their assumption that the biological community in those sediments around the fish farm recover after the fallowing process.

In 2002 I conducted a study to test the assumption that fallowing indeed results in a recovery of the sediments. This Penn Island farm in Crow Harbour had been in operation for only 18 months, which is one production cycle. After the last fish was harvested and the nets were removed in August 2002, I began sampling the bottom around the fish farm and a nearby control site. I resampled the site in 2003 and again in 2004. Yes, the sulfide levels did recover, but after two years of sampling, the salmon farm sites still had 35% fewer species than my control site.

I'm currently conducting a study in Shelburne Harbour in southwest Nova Scotia to examine the status and the recovery of the habitat around a recently vacated salmon farm. Now, the history of this farm is that it began operating in 1991, expanded in 1995, and transferred ownership in 2006. In 2009 production was suspended, and it resumed operation in 2010. It was vacated in September of this year, and I began sampling in October.

The monitoring history of this site shows that in 2007 and 2008 the sulfide levels actually exceeded the DFO level that may require a subsection 35(1) authorization. None was issued. The site was fallowed for a year. Again, the sulfide levels dropped below 1,500, predictably, but within a year of the farm's returning to production, the sulfide levels were back up to 3,000. This site has been vacated. It's been moved 100 metres north, and it's a farm that will produce three times more salmon than it has currently been producing.

I'll move to the next slide. My preliminary analysis indicates not only differences in the environmental quality of the sediments between the reference and the farm sites, but also differences in species abundance. The picture on the left is a control site, a reference site. The sediment is a light brown mud. The holes you see are likely burrows of various worms, sea cucumbers, crustacean clams. This is all food for groundfish, lobster, and other commercial as well as non-commercial species. We counted 16 different species in this control site.

The picture on the right depicts the sea bottom near and under the fish farm. The sediment is black. It's covered in extensive patches of white bacterial mats, which are typical of heavily polluted benthic environments. In it we counted only seven species.

The farm site samples on the right were dominated by two species. They're called threadworms. In a sample the size of, say, a margarine container, we found over 500 worms. This is not food for lobsters and it's not food for groundfish. These worms are indicative of highly polluted environments. Despite claims made about how rigorously aquaculture operations are monitored and managed, there are in fact no federal or provincial regulations to prevent the release of organic and nutrient waste from fish farms. The evidence shows, and I think I've shown it here, that open-net pen farms continue to operate, even though environmental standards are exceeded and the mitigation measures, that is, fallowing, allowing the farm to recover, are insufficient and incomplete to restore habitat function and health.

The federal and provincial environmental assessment process that is supposed to identify sensitive fish habitat and prevent farms from occupying the space of traditional fisheries has also been a failure. A 2011 study by a University of New Brunswick researcher has documented fishermen's observations around the environmental changes that occur around their fishing grounds.

Within two years of a salmon farm beginning to operate, fishermen report that female lobsters carrying eggs abandon the area. Scallop and sea urchin shells become brittle. Scallop meat and sea urchin roe become discoloured. And herring no longer frequent those waters.

Transitioning open net-pen farms to closed containment systems will solve the problem of habitat loss and degradation by fish farms. And it will address the concerns of traditional fishermen about the loss and the impact its having on their fisheries.

Last, by its own admission, DFO has acknowledged that it has not done a good job of protecting our oceans and our living resources. Its 2010 report, the marine status and trends report, painted a grim picture of the health of our oceans and acknowledged that “[i]ndustry and development have, or are threatening to, impact most ecosystems”. In particular, they single out the coastal zone, where both the aquaculture industry and traditional fishermen compete for space.

Moving aquaculture out of coastal waters will relieve DFO of its conflicting regulatory responsibility so that it can focus on its principal mandate, which is ocean protection, restoration, and conservation.

Thank you.

3:45 p.m.

Conservative

The Chair Conservative Rodney Weston

Thank you, Ms. Milewski.

Mr. Abbott.

3:45 p.m.

Matthew Abbott Fundy Baykeeper, Conservation Council of New Brunswick Inc.

I'd like to thank the chair and members of the committee for inviting me here to testify before you.

My name is Matthew Abbott, and I'm the Fundy Baykeeper based in St. Andrews, New Brunswick.

Fundy Baykeeper is a member of the over 200-member strong Waterkeeper Alliance, headed up by Robert Kennedy, Jr. It's an international alliance.

Fundy Baykeeper maintains an on-the-water watchdog presence in the outer Bay of Fundy.

In late 2010, Baykeeper spearheaded the formation of the Atlantic Coalition for Aquaculture Reform, a coalition of fisheries associations, conservation groups, and community groups in Atlantic Canada that are concerned about the impact of open-net pen salmon aquaculture and that are committed to protecting our coastal ecosystems.

I think you've already heard from another coalition member, the Atlantic Salmon Federation.

The problems associated with salmon aquaculture are entirely predictable and are inherent to open-net pen technology. Baykeepers have long advocated for a transition to closed containment, for reasons I'll elaborate on. Removing farms from the ocean is the only way to address the impacts of open-net pen farms.

In the interest of clarity, I'll focus on one single concern. I'm here to speak with you about the environmental impact of pesticide treatments for recurring parasite infestations in open-net pen salmon farms.

Sea lice, small crustaceans, are naturally occurring parasites on salmon and other fish. Indeed, salmon anglers sometimes consider a small number of sea lice an indication that the fish they have caught is fresh from the ocean. However, sea lice proliferate in salmon farms due to the high density of fish held together for their entire life cycles.

The salmon aquaculture industry has resorted to pesticide use to control these sea lice infestations. Pesticides designed to kill sea lice are generally also toxic to other crustaceans, including lobster, shrimp, crab, krill, and the numerous other small crustaceans that make up the zooplankton community. Indeed, in many dynamic marine ecosystems, such as the outer Bay of Fundy, these small crustaceans form the base of the food chain.

It's worth pointing out that lobster is Atlantic Canada's most valuable seafood product.

The trajectory of sea lice infestations and pesticide use has followed a similar pattern globally. I'll talk about our experience in New Brunswick, though keep in mind that the same problems have occurred in other salmon farming regions.

As you're no doubt aware, the use of eco-toxic pesticides in the salmon aquaculture industry has been controversial globally, and has been particularly so in New Brunswick recently, since there were a number of lobster kills near salmon sites in 2009. Cypermethrin, a pesticide not approved for marine use in Canada, was found on these dead and dying lobsters. A major New Brunswick aquaculture company and three of its executives were charged by Environment Canada earlier this month in relation to illegal pesticide use in this case. The alleged use of illegal pesticides by some aquaculture industry operators serves to highlight the extent of the problem in southwest New Brunswick.

To give a sense of the scale of the problem, a New Brunswick industry representative told La Presse, a Montreal newspaper, that in 2010 they were facing infestation levels of 200 lice per fish. This is quite a remarkable number, as I'm sure you'll note.

The most common pesticide treatment used has been Slice, an in-feed treatment, meaning that the pesticide is incorporated into the salmon feed. Slice, when consumed, kills sea lice attached to the treated salmon. Slice from uneaten feed and feces has been detected in sediments under and around treated farms and has been shown to cause harm to non-target organisms. However, given that Slice has been the drug of choice for over a decade, it is unsurprising that sea lice on New Brunswick farms have been showing resistance to it, meaning that it's lost its effectiveness in killing sea lice. This has led to the increasing use of bath treatments: a liquid pesticide is added to the water containing the salmon and sea lice and is then released into the open marine environment.

The aquaculture industry continues to lobby all levels of government to make more pesticides available for their industry's use. While there are some non-pesticide control mechanisms being investigated, it's accepted that pesticides will continue to be used to kill sea lice in open-net pens. The problems with illegal and thus totally uncontrolled use of pesticides are obvious.

However, pesticides approved by Health Canada's Pest Management Regulatory Agency, PMRA, also cause significant concern. Recent research carried out by DFO scientists led by Dr. Fred Page and Dr. Les Burridge out of St. Andrews to assess the potential impact of pesticide use should serve to highlight the danger of the pesticides being used in our shared waters.

The researchers mixed a non-toxic marine-safe dye with pesticides being used to treat sea lice so that the plume of pesticides could be tracked in the unpredictable Bay of Fundy tides. They found that with certain pesticides in certain conditions the plume contained levels of pesticides lethal to crustaceans between 100 metres and 1,000 metres from the treated farm.

Allow me to pause to emphasize that in a recent DFO study pesticide plumes have been found to remain toxic for a kilometre from the treated farm in one of the most biologically productive regions of the Bay of Fundy. Further, the dye and pesticide plumes in some instances have been tracked for several kilometres.

One serious consideration with the use of bath treatments is that the effluent from one treatment could pass partially diluted through another farm, potentially speeding up the development of resistance in sea lice exposed to a sub-lethal dose of pesticides.

The case of deltamethrin serves as a particularly potent example of why the increasing use of pesticides in the open-net pen salmon aquaculture industry is such a great concern. AlphaMax, the active ingredient of which is deltamethrin, was approved for emergency use in 2009-10. Deltamethrin is classified as super-toxic and can kill lobsters at levels as low as three parts per billion.

It's no surprise that fishers and others who depend on a healthy marine ecosystem become very concerned when such toxic substances are permitted to be released into our shared waters. The aquaculture industry continues to claim that pesticide usage is heavily regulated, while downplaying the potential impact of pesticides on non-target organisms. However, as federal government research continues to show, many of the pesticides used are toxic to non-target organisms, can remain toxic for a considerable distance from treated cages, and in some cases can remain detectable in sediments for over a year after treatment.

You may be wondering why I've spoken so much about sea lice and pesticides and so little about closed containment. It's simple. If salmon were grown in closed containment facilities I would have very little to say about pesticide usage.

Parasite infestations, and indeed disease outbreaks, which I haven't touched on here, are problems caused by an almost complete absence of biosecurity in open-net pens. I've referenced some of the excellent research being carried out by government scientists to identify impacts and potential impacts from pesticide usage and possibly provide some mitigation. However, we are in effect chasing mitigation heroically against all odds when the problem is in the technology we are using to grow fish. Problems such as parasite infestations, disease, and nutrient pollution cannot be adequately addressed in open-net pens.

If the Canadian aquaculture industry is as innovative as it claims to be, can we not expect it to find ways to grow fish without releasing untreated waste and chemical effluents into our shared coastal waters?

We would advocate a transition toward closed containment technologies. In addition, as something to put before the committee, an essential first step in this transition toward more sustainable practices in closed containment would be a ban on the use of pesticides in the open marine environment.

I thank you very much for your time, and I look forward to your questions.

3:55 p.m.

Conservative

The Chair Conservative Rodney Weston

Thank you, Mr. Abbott.

Mr. Allen.

3:55 p.m.

Conservative

Mike Allen Conservative Tobique—Mactaquac, NB

Thank you, Mr. Chair, and my thanks to our witnesses for being here today.

We've had a large number of New Brunswick-based witnesses here at committee, which is a nice change.

I have a few questions on the Conservation Council and where you are on closed containment, which is the study we're doing.

Has the Conservation Council or anybody done any work on closed containment? Are there any studies or expertise that the Conservation Council has used in the closed containment debate?

3:55 p.m.

Science Advisor, Conservation Council of New Brunswick Inc.

Inka Milewski

We haven't, but it would be interesting for you to know that we appeared before the Standing Committee on Fisheries and Oceans in 2000 when it was discussing the sustainability of the aquaculture industry. At that time, we called for transitioning the industry to closed containment technology. That's 11 years ago. So we very much have supported this move and see it as necessary.

3:55 p.m.

Fundy Baykeeper, Conservation Council of New Brunswick Inc.

Matthew Abbott

I would just add very briefly that we do have an innovative, intelligent industry here, and I feel it's your role, as our government, to set limits and regulations so that this industry is expected to operate in ways that respect the marine environment.

I feel there's certainly the brain power within the industry to find the best way to transition toward closed containment. I don't pretend to be an expert on growing fish, but I think expertise is there, and if we provide the impetus to put that expertise toward sustainable closed containment technologies, I think we'll see an effective transition.

3:55 p.m.

Conservative

Mike Allen Conservative Tobique—Mactaquac, NB

So basically all your studies have been on the open net types.

3:55 p.m.

Fundy Baykeeper, Conservation Council of New Brunswick Inc.

3:55 p.m.

Conservative

Mike Allen Conservative Tobique—Mactaquac, NB

You said in 2000 you were talking about transitioning, and when you were speaking about that, what did you anticipate was a transition period in which you would expect this to happen? How long did you see that period?

In the Conservation Council, I know a number of your other efforts in New Brunswick have focused on water use. Has any discussion happened on the water use of bringing closed containment on shore? Obviously, there's going to have to be a water source. Have you talked about what that transition period is?

3:55 p.m.

Science Advisor, Conservation Council of New Brunswick Inc.

Inka Milewski

Back in 2000, there were already the beginnings of some technology development in closed containment. What I think is remarkable, and it has happened in the last 11 years, is that we're actually now talking about recirculation systems, so that closed containment systems are not constantly drawing water from some source and basically putting it out the other end. There is a lot of water conservation going on, recirculation and better filtration systems.

We know that kind of technology has been developed over the last 10 to 11 years and we know or read of, as I'm sure you do as the committee, systems that are in place like that currently. I don't know if you've heard from those people, but I do know they exist.

3:55 p.m.

Conservative

Mike Allen Conservative Tobique—Mactaquac, NB

Given that we're only at a point where maybe there are 200 tonnes or so, we don't have any commercial scale, by any stretch of the imagination. So given that we're not at a commercial scale but still at demonstration projects, what was your idea? I'd like to get your feel for what you think the transition period is.

Ms. Milewski, you also said “the current” regulatory environment. That suggests there could be a regulatory environment that might be successful. It begs the question then, if you're going to have a transition period, whether you must have some kind of regulatory environment that would have to be in place for the transition. Can you speculate on what that transition period is and what the regulatory environment would be?

3:55 p.m.

Science Advisor, Conservation Council of New Brunswick Inc.

Inka Milewski

I have to tell you that the only example I have to go by in how quickly technology can develop is based on my history. And this may not be an appropriate comparison, but it's certainly one that shows that when there is a regulatory sort of drop-dead deadline, the technology develops very quickly.

In 1990 some of you may recall that the pulp and paper industry was required by Environment Canada to get rid of dioxins out of its waste stream, dioxins being toxic in parts per trillion. This was one of the most hazardous chemicals known to man and it was a byproduct of the pulp and paper industry.

In 1990 the industry was told it had five years to get that dioxin out of its waste stream. The industry responded by saying, look, it was going to close mills, this was going to cost jobs—but in fact it did it in three years. It got dioxins out of the waste stream in three years' time because it had that looming deadline.

So when you ask me if they can transition, the technology is there. The question now is what is going to drive moving that more quickly, and I think it is a regulatory deadline. Why not five years? Five years could do it.

4 p.m.

Conservative

Mike Allen Conservative Tobique—Mactaquac, NB

That brings me to my next question then. Obviously, the Conservation Council has done a lot of work with respect to other countries and what they're doing as well, and it is taking other practices on the regulatory environment.

Mr. John Holder, who gave testimony the other day, talked about the competitive nature of the market, that Atlantic salmon is a commodity product and therefore people aren't going to pay the price for it. Therefore, by definition, if they move it on land it's going to be more expensive.

The coho can compete because of a niche market. So how do we compete against other markets? Are we just going to blow away our existing aquaculture market for other countries that are not going to do that?

4 p.m.

Science Advisor, Conservation Council of New Brunswick Inc.

Inka Milewski

I think other countries are beginning to eye this because they do see it as what the consumer is demanding. There is some consumer pressure to produce salmon in a way that doesn't harm the environment, that could avoid the use of pesticides and antibiotics, because in closed contained systems you have better control of these externalities.

I think in the market, combined with other forces, economic forces, perhaps, if you see these salmon being moved into closed systems—everybody is doing it—then that may drive the price of that technology down, which will then lower the price of salmon, and then it becomes very affordable.

We also know that when technology becomes mass technology, the price of the product produced comes down.

4 p.m.

Conservative

Mike Allen Conservative Tobique—Mactaquac, NB

Thank you.

4 p.m.

Conservative

The Chair Conservative Rodney Weston

Thank you very much.

Mr. Donnelly.

4 p.m.

NDP

Fin Donnelly NDP New Westminster—Coquitlam, BC

Thank you, Mr. Chair.

I would like to thank our guests for being here today as well.

Just as a note, I'll split my time with Mr. Cleary.

You mentioned that you are proponents of closed containment in terms of the aquaculture industry on the east coast. This is a two-part question. Do you know of any other members of the public or other industries that support that position in eastern Canada? Could you also explain why you think improving open-net aquaculture isn't the way to go to move forward?

4 p.m.

Fundy Baykeeper, Conservation Council of New Brunswick Inc.

Matthew Abbott

I won't repeat what the Atlantic Salmon Federation has already said to you, but they're a major international organization on the east coast of North America. They have a pilot study under way, as you heard, into closed containment.

The other major environmental group in Nova Scotia, the Ecology Action Centre, has also done quite a bit of work in closed containment. There are closed containment facilities for other species in the Maritimes.

4 p.m.

Science Advisor, Conservation Council of New Brunswick Inc.

Inka Milewski

Currently there are several species that are grown in closed containment systems in Nova Scotia. It's a technology that is used to raise smolt. It's salmon. Before they are put into open-net pens, they're grown in closed contained systems on land. It's just a matter of transferring that to the adult salmon.

4 p.m.

Fundy Baykeeper, Conservation Council of New Brunswick Inc.

Matthew Abbott

This is to the second part of your question. There has been a lot of work that's gone in over the past 30 years in Atlantic Canada into trying to mitigate the impacts of salmon farms. We've seen mitigation measures to try to capture nutrients. So far they've been, in effect, unsuccessful, and we still see toxic sulphide levels, as Inka was showing, under farms that are trying to use these mitigation measures.

As I mentioned, there are a number of efforts for non-chemical controls of sea lice, but it's recognized by industry that those aren't going to be able to work alone. So they plan to continue using pesticides, and indeed they are arguing that they're going to need a broader suite of pesticides, some of which—like the one I mentioned, deltamethrin—are incredibly toxic.

There has been a lot of work in mitigating and trying to fix open-net pen salmon aquaculture. But the problems with it—the waste stream not being managed and having no biosecurity—are such big problems that it's not something we've been able to mitigate away. And I don't think there is any reason to expect we will be able to in the future.

4:05 p.m.

NDP

Fin Donnelly NDP New Westminster—Coquitlam, BC

Thank you.

In your presentation you talked about sulphide levels exceeding recommended levels. You talked about chemicals, certain pesticide applications. Have there been any other impacts, or impacts to other industries? I'm thinking about lobsters, which you referenced, and shellfish or urchin industries? How have these industries reacted?

4:05 p.m.

Science Advisor, Conservation Council of New Brunswick Inc.

Inka Milewski

A report was released earlier this year by a researcher at the University of New Brunswick who interviewed traditional fishermen, who have obviously fished for 30 or 40 years. There is a very distinct pattern that fishermen observe when fish farms go in. Initially when the farm goes in, they notice some of the species they are interested in—lobsters, sea urchins, scallops, groundfish—move in. But as the organic load increases, the bottom becomes very toxic and the water quality is very poor. Those species are displaced and they disappear, and sometimes they don't come back. The fishermen have basically said, “We've lost some of those fisheries. We can't go after that species any more. We don't know where they are. They're not in our traditional fishing areas.”

4:05 p.m.

Fundy Baykeeper, Conservation Council of New Brunswick Inc.

Matthew Abbott

I think it's important to recognize that lobster landings in southwest New Brunswick have gone up. We're not trying to hide that. Research is beginning to show that factors around a loss of predation—primarily groundfish like cod that are no longer present—might be an indication of why lobster landings are going up.

There is a clear trend, where fishermen are seeing changes in lobster behaviour around salmon farms. Female lobsters carrying eggs stay away from farms after a few years of production. So we're seeing very real impacts, but we acknowledge that this is a changing ecosystem.

One of the concerning things is that we don't have a full handle on what's going on in the oceans. We know there are concerning changes occurring, and we feel very strongly that we should be removing pressures like open-net pens, given the state of our oceans.